wanghaofan's picture
Upload 11 files
f2b7487 verified
raw
history blame
53.5 kB
# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Any, Dict, List, Optional, Tuple
import torch
import torch.nn.functional as F
from torch import nn
from diffusers.utils import deprecate, logging
from diffusers.utils.torch_utils import maybe_allow_in_graph
from diffusers.models.activations import GEGLU, GELU, ApproximateGELU, FP32SiLU, SwiGLU
from diffusers.models.attention_processor import Attention, JointAttnProcessor2_0
from diffusers.models.embeddings import SinusoidalPositionalEmbedding
from diffusers.models.normalization import AdaLayerNorm, AdaLayerNormContinuous, AdaLayerNormZero, RMSNorm, SD35AdaLayerNormZeroX
logger = logging.get_logger(__name__)
def _chunked_feed_forward(ff: nn.Module, hidden_states: torch.Tensor, chunk_dim: int, chunk_size: int):
# "feed_forward_chunk_size" can be used to save memory
if hidden_states.shape[chunk_dim] % chunk_size != 0:
raise ValueError(
f"`hidden_states` dimension to be chunked: {hidden_states.shape[chunk_dim]} has to be divisible by chunk size: {chunk_size}. Make sure to set an appropriate `chunk_size` when calling `unet.enable_forward_chunking`."
)
num_chunks = hidden_states.shape[chunk_dim] // chunk_size
ff_output = torch.cat(
[ff(hid_slice) for hid_slice in hidden_states.chunk(num_chunks, dim=chunk_dim)],
dim=chunk_dim,
)
return ff_output
@maybe_allow_in_graph
class GatedSelfAttentionDense(nn.Module):
r"""
A gated self-attention dense layer that combines visual features and object features.
Parameters:
query_dim (`int`): The number of channels in the query.
context_dim (`int`): The number of channels in the context.
n_heads (`int`): The number of heads to use for attention.
d_head (`int`): The number of channels in each head.
"""
def __init__(self, query_dim: int, context_dim: int, n_heads: int, d_head: int):
super().__init__()
# we need a linear projection since we need cat visual feature and obj feature
self.linear = nn.Linear(context_dim, query_dim)
self.attn = Attention(query_dim=query_dim, heads=n_heads, dim_head=d_head)
self.ff = FeedForward(query_dim, activation_fn="geglu")
self.norm1 = nn.LayerNorm(query_dim)
self.norm2 = nn.LayerNorm(query_dim)
self.register_parameter("alpha_attn", nn.Parameter(torch.tensor(0.0)))
self.register_parameter("alpha_dense", nn.Parameter(torch.tensor(0.0)))
self.enabled = True
def forward(self, x: torch.Tensor, objs: torch.Tensor) -> torch.Tensor:
if not self.enabled:
return x
n_visual = x.shape[1]
objs = self.linear(objs)
x = x + self.alpha_attn.tanh() * self.attn(self.norm1(torch.cat([x, objs], dim=1)))[:, :n_visual, :]
x = x + self.alpha_dense.tanh() * self.ff(self.norm2(x))
return x
@maybe_allow_in_graph
class JointTransformerBlock(nn.Module):
r"""
A Transformer block following the MMDiT architecture, introduced in Stable Diffusion 3.
Reference: https://arxiv.org/abs/2403.03206
Parameters:
dim (`int`): The number of channels in the input and output.
num_attention_heads (`int`): The number of heads to use for multi-head attention.
attention_head_dim (`int`): The number of channels in each head.
context_pre_only (`bool`): Boolean to determine if we should add some blocks associated with the
processing of `context` conditions.
"""
def __init__(
self,
dim: int,
num_attention_heads: int,
attention_head_dim: int,
context_pre_only: bool = False,
qk_norm: Optional[str] = None,
use_dual_attention: bool = False,
):
super().__init__()
self.use_dual_attention = use_dual_attention
self.context_pre_only = context_pre_only
context_norm_type = "ada_norm_continous" if context_pre_only else "ada_norm_zero"
if use_dual_attention:
self.norm1 = SD35AdaLayerNormZeroX(dim)
else:
self.norm1 = AdaLayerNormZero(dim)
if context_norm_type == "ada_norm_continous":
self.norm1_context = AdaLayerNormContinuous(
dim, dim, elementwise_affine=False, eps=1e-6, bias=True, norm_type="layer_norm"
)
elif context_norm_type == "ada_norm_zero":
self.norm1_context = AdaLayerNormZero(dim)
else:
raise ValueError(
f"Unknown context_norm_type: {context_norm_type}, currently only support `ada_norm_continous`, `ada_norm_zero`"
)
if hasattr(F, "scaled_dot_product_attention"):
processor = JointAttnProcessor2_0()
else:
raise ValueError(
"The current PyTorch version does not support the `scaled_dot_product_attention` function."
)
self.attn = Attention(
query_dim=dim,
cross_attention_dim=None,
added_kv_proj_dim=dim,
dim_head=attention_head_dim,
heads=num_attention_heads,
out_dim=dim,
context_pre_only=context_pre_only,
bias=True,
processor=processor,
qk_norm=qk_norm,
eps=1e-6,
)
if use_dual_attention:
self.attn2 = Attention(
query_dim=dim,
cross_attention_dim=None,
dim_head=attention_head_dim,
heads=num_attention_heads,
out_dim=dim,
bias=True,
processor=processor,
qk_norm=qk_norm,
eps=1e-6,
)
else:
self.attn2 = None
self.norm2 = nn.LayerNorm(dim, elementwise_affine=False, eps=1e-6)
self.ff = FeedForward(dim=dim, dim_out=dim, activation_fn="gelu-approximate")
if not context_pre_only:
self.norm2_context = nn.LayerNorm(dim, elementwise_affine=False, eps=1e-6)
self.ff_context = FeedForward(dim=dim, dim_out=dim, activation_fn="gelu-approximate")
else:
self.norm2_context = None
self.ff_context = None
# let chunk size default to None
self._chunk_size = None
self._chunk_dim = 0
# Copied from diffusers.models.attention.BasicTransformerBlock.set_chunk_feed_forward
def set_chunk_feed_forward(self, chunk_size: Optional[int], dim: int = 0):
# Sets chunk feed-forward
self._chunk_size = chunk_size
self._chunk_dim = dim
def forward(
self, hidden_states: torch.FloatTensor, encoder_hidden_states: torch.FloatTensor, temb: torch.FloatTensor,
joint_attention_kwargs=None,
):
if self.use_dual_attention:
norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp, norm_hidden_states2, gate_msa2 = self.norm1(
hidden_states, emb=temb
)
else:
norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1(hidden_states, emb=temb)
if self.context_pre_only:
norm_encoder_hidden_states = self.norm1_context(encoder_hidden_states, temb)
else:
norm_encoder_hidden_states, c_gate_msa, c_shift_mlp, c_scale_mlp, c_gate_mlp = self.norm1_context(
encoder_hidden_states, emb=temb
)
# Attention.
attn_output, context_attn_output = self.attn(
hidden_states=norm_hidden_states, encoder_hidden_states=norm_encoder_hidden_states,
**({} if joint_attention_kwargs is None else joint_attention_kwargs),
)
# Process attention outputs for the `hidden_states`.
attn_output = gate_msa.unsqueeze(1) * attn_output
hidden_states = hidden_states + attn_output
if self.use_dual_attention:
attn_output2 = self.attn2(hidden_states=norm_hidden_states2, **({} if joint_attention_kwargs is None else joint_attention_kwargs),)
attn_output2 = gate_msa2.unsqueeze(1) * attn_output2
hidden_states = hidden_states + attn_output2
norm_hidden_states = self.norm2(hidden_states)
norm_hidden_states = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None]
if self._chunk_size is not None:
# "feed_forward_chunk_size" can be used to save memory
ff_output = _chunked_feed_forward(self.ff, norm_hidden_states, self._chunk_dim, self._chunk_size)
else:
ff_output = self.ff(norm_hidden_states)
ff_output = gate_mlp.unsqueeze(1) * ff_output
hidden_states = hidden_states + ff_output
# Process attention outputs for the `encoder_hidden_states`.
if self.context_pre_only:
encoder_hidden_states = None
else:
context_attn_output = c_gate_msa.unsqueeze(1) * context_attn_output
encoder_hidden_states = encoder_hidden_states + context_attn_output
norm_encoder_hidden_states = self.norm2_context(encoder_hidden_states)
norm_encoder_hidden_states = norm_encoder_hidden_states * (1 + c_scale_mlp[:, None]) + c_shift_mlp[:, None]
if self._chunk_size is not None:
# "feed_forward_chunk_size" can be used to save memory
context_ff_output = _chunked_feed_forward(
self.ff_context, norm_encoder_hidden_states, self._chunk_dim, self._chunk_size
)
else:
context_ff_output = self.ff_context(norm_encoder_hidden_states)
encoder_hidden_states = encoder_hidden_states + c_gate_mlp.unsqueeze(1) * context_ff_output
return encoder_hidden_states, hidden_states
@maybe_allow_in_graph
class BasicTransformerBlock(nn.Module):
r"""
A basic Transformer block.
Parameters:
dim (`int`): The number of channels in the input and output.
num_attention_heads (`int`): The number of heads to use for multi-head attention.
attention_head_dim (`int`): The number of channels in each head.
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
cross_attention_dim (`int`, *optional*): The size of the encoder_hidden_states vector for cross attention.
activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward.
num_embeds_ada_norm (:
obj: `int`, *optional*): The number of diffusion steps used during training. See `Transformer2DModel`.
attention_bias (:
obj: `bool`, *optional*, defaults to `False`): Configure if the attentions should contain a bias parameter.
only_cross_attention (`bool`, *optional*):
Whether to use only cross-attention layers. In this case two cross attention layers are used.
double_self_attention (`bool`, *optional*):
Whether to use two self-attention layers. In this case no cross attention layers are used.
upcast_attention (`bool`, *optional*):
Whether to upcast the attention computation to float32. This is useful for mixed precision training.
norm_elementwise_affine (`bool`, *optional*, defaults to `True`):
Whether to use learnable elementwise affine parameters for normalization.
norm_type (`str`, *optional*, defaults to `"layer_norm"`):
The normalization layer to use. Can be `"layer_norm"`, `"ada_norm"` or `"ada_norm_zero"`.
final_dropout (`bool` *optional*, defaults to False):
Whether to apply a final dropout after the last feed-forward layer.
attention_type (`str`, *optional*, defaults to `"default"`):
The type of attention to use. Can be `"default"` or `"gated"` or `"gated-text-image"`.
positional_embeddings (`str`, *optional*, defaults to `None`):
The type of positional embeddings to apply to.
num_positional_embeddings (`int`, *optional*, defaults to `None`):
The maximum number of positional embeddings to apply.
"""
def __init__(
self,
dim: int,
num_attention_heads: int,
attention_head_dim: int,
dropout=0.0,
cross_attention_dim: Optional[int] = None,
activation_fn: str = "geglu",
num_embeds_ada_norm: Optional[int] = None,
attention_bias: bool = False,
only_cross_attention: bool = False,
double_self_attention: bool = False,
upcast_attention: bool = False,
norm_elementwise_affine: bool = True,
norm_type: str = "layer_norm", # 'layer_norm', 'ada_norm', 'ada_norm_zero', 'ada_norm_single', 'ada_norm_continuous', 'layer_norm_i2vgen'
norm_eps: float = 1e-5,
final_dropout: bool = False,
attention_type: str = "default",
positional_embeddings: Optional[str] = None,
num_positional_embeddings: Optional[int] = None,
ada_norm_continous_conditioning_embedding_dim: Optional[int] = None,
ada_norm_bias: Optional[int] = None,
ff_inner_dim: Optional[int] = None,
ff_bias: bool = True,
attention_out_bias: bool = True,
):
super().__init__()
self.dim = dim
self.num_attention_heads = num_attention_heads
self.attention_head_dim = attention_head_dim
self.dropout = dropout
self.cross_attention_dim = cross_attention_dim
self.activation_fn = activation_fn
self.attention_bias = attention_bias
self.double_self_attention = double_self_attention
self.norm_elementwise_affine = norm_elementwise_affine
self.positional_embeddings = positional_embeddings
self.num_positional_embeddings = num_positional_embeddings
self.only_cross_attention = only_cross_attention
# We keep these boolean flags for backward-compatibility.
self.use_ada_layer_norm_zero = (num_embeds_ada_norm is not None) and norm_type == "ada_norm_zero"
self.use_ada_layer_norm = (num_embeds_ada_norm is not None) and norm_type == "ada_norm"
self.use_ada_layer_norm_single = norm_type == "ada_norm_single"
self.use_layer_norm = norm_type == "layer_norm"
self.use_ada_layer_norm_continuous = norm_type == "ada_norm_continuous"
if norm_type in ("ada_norm", "ada_norm_zero") and num_embeds_ada_norm is None:
raise ValueError(
f"`norm_type` is set to {norm_type}, but `num_embeds_ada_norm` is not defined. Please make sure to"
f" define `num_embeds_ada_norm` if setting `norm_type` to {norm_type}."
)
self.norm_type = norm_type
self.num_embeds_ada_norm = num_embeds_ada_norm
if positional_embeddings and (num_positional_embeddings is None):
raise ValueError(
"If `positional_embedding` type is defined, `num_positition_embeddings` must also be defined."
)
if positional_embeddings == "sinusoidal":
self.pos_embed = SinusoidalPositionalEmbedding(dim, max_seq_length=num_positional_embeddings)
else:
self.pos_embed = None
# Define 3 blocks. Each block has its own normalization layer.
# 1. Self-Attn
if norm_type == "ada_norm":
self.norm1 = AdaLayerNorm(dim, num_embeds_ada_norm)
elif norm_type == "ada_norm_zero":
self.norm1 = AdaLayerNormZero(dim, num_embeds_ada_norm)
elif norm_type == "ada_norm_continuous":
self.norm1 = AdaLayerNormContinuous(
dim,
ada_norm_continous_conditioning_embedding_dim,
norm_elementwise_affine,
norm_eps,
ada_norm_bias,
"rms_norm",
)
else:
self.norm1 = nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine, eps=norm_eps)
self.attn1 = Attention(
query_dim=dim,
heads=num_attention_heads,
dim_head=attention_head_dim,
dropout=dropout,
bias=attention_bias,
cross_attention_dim=cross_attention_dim if only_cross_attention else None,
upcast_attention=upcast_attention,
out_bias=attention_out_bias,
)
# 2. Cross-Attn
if cross_attention_dim is not None or double_self_attention:
# We currently only use AdaLayerNormZero for self attention where there will only be one attention block.
# I.e. the number of returned modulation chunks from AdaLayerZero would not make sense if returned during
# the second cross attention block.
if norm_type == "ada_norm":
self.norm2 = AdaLayerNorm(dim, num_embeds_ada_norm)
elif norm_type == "ada_norm_continuous":
self.norm2 = AdaLayerNormContinuous(
dim,
ada_norm_continous_conditioning_embedding_dim,
norm_elementwise_affine,
norm_eps,
ada_norm_bias,
"rms_norm",
)
else:
self.norm2 = nn.LayerNorm(dim, norm_eps, norm_elementwise_affine)
self.attn2 = Attention(
query_dim=dim,
cross_attention_dim=cross_attention_dim if not double_self_attention else None,
heads=num_attention_heads,
dim_head=attention_head_dim,
dropout=dropout,
bias=attention_bias,
upcast_attention=upcast_attention,
out_bias=attention_out_bias,
) # is self-attn if encoder_hidden_states is none
else:
if norm_type == "ada_norm_single": # For Latte
self.norm2 = nn.LayerNorm(dim, norm_eps, norm_elementwise_affine)
else:
self.norm2 = None
self.attn2 = None
# 3. Feed-forward
if norm_type == "ada_norm_continuous":
self.norm3 = AdaLayerNormContinuous(
dim,
ada_norm_continous_conditioning_embedding_dim,
norm_elementwise_affine,
norm_eps,
ada_norm_bias,
"layer_norm",
)
elif norm_type in ["ada_norm_zero", "ada_norm", "layer_norm"]:
self.norm3 = nn.LayerNorm(dim, norm_eps, norm_elementwise_affine)
elif norm_type == "layer_norm_i2vgen":
self.norm3 = None
self.ff = FeedForward(
dim,
dropout=dropout,
activation_fn=activation_fn,
final_dropout=final_dropout,
inner_dim=ff_inner_dim,
bias=ff_bias,
)
# 4. Fuser
if attention_type == "gated" or attention_type == "gated-text-image":
self.fuser = GatedSelfAttentionDense(dim, cross_attention_dim, num_attention_heads, attention_head_dim)
# 5. Scale-shift for PixArt-Alpha.
if norm_type == "ada_norm_single":
self.scale_shift_table = nn.Parameter(torch.randn(6, dim) / dim**0.5)
# let chunk size default to None
self._chunk_size = None
self._chunk_dim = 0
def set_chunk_feed_forward(self, chunk_size: Optional[int], dim: int = 0):
# Sets chunk feed-forward
self._chunk_size = chunk_size
self._chunk_dim = dim
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
encoder_hidden_states: Optional[torch.Tensor] = None,
encoder_attention_mask: Optional[torch.Tensor] = None,
timestep: Optional[torch.LongTensor] = None,
cross_attention_kwargs: Dict[str, Any] = None,
class_labels: Optional[torch.LongTensor] = None,
added_cond_kwargs: Optional[Dict[str, torch.Tensor]] = None,
) -> torch.Tensor:
if cross_attention_kwargs is not None:
if cross_attention_kwargs.get("scale", None) is not None:
logger.warning("Passing `scale` to `cross_attention_kwargs` is deprecated. `scale` will be ignored.")
# Notice that normalization is always applied before the real computation in the following blocks.
# 0. Self-Attention
batch_size = hidden_states.shape[0]
if self.norm_type == "ada_norm":
norm_hidden_states = self.norm1(hidden_states, timestep)
elif self.norm_type == "ada_norm_zero":
norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1(
hidden_states, timestep, class_labels, hidden_dtype=hidden_states.dtype
)
elif self.norm_type in ["layer_norm", "layer_norm_i2vgen"]:
norm_hidden_states = self.norm1(hidden_states)
elif self.norm_type == "ada_norm_continuous":
norm_hidden_states = self.norm1(hidden_states, added_cond_kwargs["pooled_text_emb"])
elif self.norm_type == "ada_norm_single":
shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = (
self.scale_shift_table[None] + timestep.reshape(batch_size, 6, -1)
).chunk(6, dim=1)
norm_hidden_states = self.norm1(hidden_states)
norm_hidden_states = norm_hidden_states * (1 + scale_msa) + shift_msa
else:
raise ValueError("Incorrect norm used")
if self.pos_embed is not None:
norm_hidden_states = self.pos_embed(norm_hidden_states)
# 1. Prepare GLIGEN inputs
cross_attention_kwargs = cross_attention_kwargs.copy() if cross_attention_kwargs is not None else {}
gligen_kwargs = cross_attention_kwargs.pop("gligen", None)
attn_output = self.attn1(
norm_hidden_states,
encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None,
attention_mask=attention_mask,
**cross_attention_kwargs,
)
if self.norm_type == "ada_norm_zero":
attn_output = gate_msa.unsqueeze(1) * attn_output
elif self.norm_type == "ada_norm_single":
attn_output = gate_msa * attn_output
hidden_states = attn_output + hidden_states
if hidden_states.ndim == 4:
hidden_states = hidden_states.squeeze(1)
# 1.2 GLIGEN Control
if gligen_kwargs is not None:
hidden_states = self.fuser(hidden_states, gligen_kwargs["objs"])
# 3. Cross-Attention
if self.attn2 is not None:
if self.norm_type == "ada_norm":
norm_hidden_states = self.norm2(hidden_states, timestep)
elif self.norm_type in ["ada_norm_zero", "layer_norm", "layer_norm_i2vgen"]:
norm_hidden_states = self.norm2(hidden_states)
elif self.norm_type == "ada_norm_single":
# For PixArt norm2 isn't applied here:
# https://github.com/PixArt-alpha/PixArt-alpha/blob/0f55e922376d8b797edd44d25d0e7464b260dcab/diffusion/model/nets/PixArtMS.py#L70C1-L76C103
norm_hidden_states = hidden_states
elif self.norm_type == "ada_norm_continuous":
norm_hidden_states = self.norm2(hidden_states, added_cond_kwargs["pooled_text_emb"])
else:
raise ValueError("Incorrect norm")
if self.pos_embed is not None and self.norm_type != "ada_norm_single":
norm_hidden_states = self.pos_embed(norm_hidden_states)
attn_output = self.attn2(
norm_hidden_states,
encoder_hidden_states=encoder_hidden_states,
attention_mask=encoder_attention_mask,
**cross_attention_kwargs,
)
hidden_states = attn_output + hidden_states
# 4. Feed-forward
# i2vgen doesn't have this norm 🤷‍♂️
if self.norm_type == "ada_norm_continuous":
norm_hidden_states = self.norm3(hidden_states, added_cond_kwargs["pooled_text_emb"])
elif not self.norm_type == "ada_norm_single":
norm_hidden_states = self.norm3(hidden_states)
if self.norm_type == "ada_norm_zero":
norm_hidden_states = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None]
if self.norm_type == "ada_norm_single":
norm_hidden_states = self.norm2(hidden_states)
norm_hidden_states = norm_hidden_states * (1 + scale_mlp) + shift_mlp
if self._chunk_size is not None:
# "feed_forward_chunk_size" can be used to save memory
ff_output = _chunked_feed_forward(self.ff, norm_hidden_states, self._chunk_dim, self._chunk_size)
else:
ff_output = self.ff(norm_hidden_states)
if self.norm_type == "ada_norm_zero":
ff_output = gate_mlp.unsqueeze(1) * ff_output
elif self.norm_type == "ada_norm_single":
ff_output = gate_mlp * ff_output
hidden_states = ff_output + hidden_states
if hidden_states.ndim == 4:
hidden_states = hidden_states.squeeze(1)
return hidden_states
class LuminaFeedForward(nn.Module):
r"""
A feed-forward layer.
Parameters:
hidden_size (`int`):
The dimensionality of the hidden layers in the model. This parameter determines the width of the model's
hidden representations.
intermediate_size (`int`): The intermediate dimension of the feedforward layer.
multiple_of (`int`, *optional*): Value to ensure hidden dimension is a multiple
of this value.
ffn_dim_multiplier (float, *optional*): Custom multiplier for hidden
dimension. Defaults to None.
"""
def __init__(
self,
dim: int,
inner_dim: int,
multiple_of: Optional[int] = 256,
ffn_dim_multiplier: Optional[float] = None,
):
super().__init__()
inner_dim = int(2 * inner_dim / 3)
# custom hidden_size factor multiplier
if ffn_dim_multiplier is not None:
inner_dim = int(ffn_dim_multiplier * inner_dim)
inner_dim = multiple_of * ((inner_dim + multiple_of - 1) // multiple_of)
self.linear_1 = nn.Linear(
dim,
inner_dim,
bias=False,
)
self.linear_2 = nn.Linear(
inner_dim,
dim,
bias=False,
)
self.linear_3 = nn.Linear(
dim,
inner_dim,
bias=False,
)
self.silu = FP32SiLU()
def forward(self, x):
return self.linear_2(self.silu(self.linear_1(x)) * self.linear_3(x))
@maybe_allow_in_graph
class TemporalBasicTransformerBlock(nn.Module):
r"""
A basic Transformer block for video like data.
Parameters:
dim (`int`): The number of channels in the input and output.
time_mix_inner_dim (`int`): The number of channels for temporal attention.
num_attention_heads (`int`): The number of heads to use for multi-head attention.
attention_head_dim (`int`): The number of channels in each head.
cross_attention_dim (`int`, *optional*): The size of the encoder_hidden_states vector for cross attention.
"""
def __init__(
self,
dim: int,
time_mix_inner_dim: int,
num_attention_heads: int,
attention_head_dim: int,
cross_attention_dim: Optional[int] = None,
):
super().__init__()
self.is_res = dim == time_mix_inner_dim
self.norm_in = nn.LayerNorm(dim)
# Define 3 blocks. Each block has its own normalization layer.
# 1. Self-Attn
self.ff_in = FeedForward(
dim,
dim_out=time_mix_inner_dim,
activation_fn="geglu",
)
self.norm1 = nn.LayerNorm(time_mix_inner_dim)
self.attn1 = Attention(
query_dim=time_mix_inner_dim,
heads=num_attention_heads,
dim_head=attention_head_dim,
cross_attention_dim=None,
)
# 2. Cross-Attn
if cross_attention_dim is not None:
# We currently only use AdaLayerNormZero for self attention where there will only be one attention block.
# I.e. the number of returned modulation chunks from AdaLayerZero would not make sense if returned during
# the second cross attention block.
self.norm2 = nn.LayerNorm(time_mix_inner_dim)
self.attn2 = Attention(
query_dim=time_mix_inner_dim,
cross_attention_dim=cross_attention_dim,
heads=num_attention_heads,
dim_head=attention_head_dim,
) # is self-attn if encoder_hidden_states is none
else:
self.norm2 = None
self.attn2 = None
# 3. Feed-forward
self.norm3 = nn.LayerNorm(time_mix_inner_dim)
self.ff = FeedForward(time_mix_inner_dim, activation_fn="geglu")
# let chunk size default to None
self._chunk_size = None
self._chunk_dim = None
def set_chunk_feed_forward(self, chunk_size: Optional[int], **kwargs):
# Sets chunk feed-forward
self._chunk_size = chunk_size
# chunk dim should be hardcoded to 1 to have better speed vs. memory trade-off
self._chunk_dim = 1
def forward(
self,
hidden_states: torch.Tensor,
num_frames: int,
encoder_hidden_states: Optional[torch.Tensor] = None,
) -> torch.Tensor:
# Notice that normalization is always applied before the real computation in the following blocks.
# 0. Self-Attention
batch_size = hidden_states.shape[0]
batch_frames, seq_length, channels = hidden_states.shape
batch_size = batch_frames // num_frames
hidden_states = hidden_states[None, :].reshape(batch_size, num_frames, seq_length, channels)
hidden_states = hidden_states.permute(0, 2, 1, 3)
hidden_states = hidden_states.reshape(batch_size * seq_length, num_frames, channels)
residual = hidden_states
hidden_states = self.norm_in(hidden_states)
if self._chunk_size is not None:
hidden_states = _chunked_feed_forward(self.ff_in, hidden_states, self._chunk_dim, self._chunk_size)
else:
hidden_states = self.ff_in(hidden_states)
if self.is_res:
hidden_states = hidden_states + residual
norm_hidden_states = self.norm1(hidden_states)
attn_output = self.attn1(norm_hidden_states, encoder_hidden_states=None)
hidden_states = attn_output + hidden_states
# 3. Cross-Attention
if self.attn2 is not None:
norm_hidden_states = self.norm2(hidden_states)
attn_output = self.attn2(norm_hidden_states, encoder_hidden_states=encoder_hidden_states)
hidden_states = attn_output + hidden_states
# 4. Feed-forward
norm_hidden_states = self.norm3(hidden_states)
if self._chunk_size is not None:
ff_output = _chunked_feed_forward(self.ff, norm_hidden_states, self._chunk_dim, self._chunk_size)
else:
ff_output = self.ff(norm_hidden_states)
if self.is_res:
hidden_states = ff_output + hidden_states
else:
hidden_states = ff_output
hidden_states = hidden_states[None, :].reshape(batch_size, seq_length, num_frames, channels)
hidden_states = hidden_states.permute(0, 2, 1, 3)
hidden_states = hidden_states.reshape(batch_size * num_frames, seq_length, channels)
return hidden_states
class SkipFFTransformerBlock(nn.Module):
def __init__(
self,
dim: int,
num_attention_heads: int,
attention_head_dim: int,
kv_input_dim: int,
kv_input_dim_proj_use_bias: bool,
dropout=0.0,
cross_attention_dim: Optional[int] = None,
attention_bias: bool = False,
attention_out_bias: bool = True,
):
super().__init__()
if kv_input_dim != dim:
self.kv_mapper = nn.Linear(kv_input_dim, dim, kv_input_dim_proj_use_bias)
else:
self.kv_mapper = None
self.norm1 = RMSNorm(dim, 1e-06)
self.attn1 = Attention(
query_dim=dim,
heads=num_attention_heads,
dim_head=attention_head_dim,
dropout=dropout,
bias=attention_bias,
cross_attention_dim=cross_attention_dim,
out_bias=attention_out_bias,
)
self.norm2 = RMSNorm(dim, 1e-06)
self.attn2 = Attention(
query_dim=dim,
cross_attention_dim=cross_attention_dim,
heads=num_attention_heads,
dim_head=attention_head_dim,
dropout=dropout,
bias=attention_bias,
out_bias=attention_out_bias,
)
def forward(self, hidden_states, encoder_hidden_states, cross_attention_kwargs):
cross_attention_kwargs = cross_attention_kwargs.copy() if cross_attention_kwargs is not None else {}
if self.kv_mapper is not None:
encoder_hidden_states = self.kv_mapper(F.silu(encoder_hidden_states))
norm_hidden_states = self.norm1(hidden_states)
attn_output = self.attn1(
norm_hidden_states,
encoder_hidden_states=encoder_hidden_states,
**cross_attention_kwargs,
)
hidden_states = attn_output + hidden_states
norm_hidden_states = self.norm2(hidden_states)
attn_output = self.attn2(
norm_hidden_states,
encoder_hidden_states=encoder_hidden_states,
**cross_attention_kwargs,
)
hidden_states = attn_output + hidden_states
return hidden_states
@maybe_allow_in_graph
class FreeNoiseTransformerBlock(nn.Module):
r"""
A FreeNoise Transformer block.
Parameters:
dim (`int`):
The number of channels in the input and output.
num_attention_heads (`int`):
The number of heads to use for multi-head attention.
attention_head_dim (`int`):
The number of channels in each head.
dropout (`float`, *optional*, defaults to 0.0):
The dropout probability to use.
cross_attention_dim (`int`, *optional*):
The size of the encoder_hidden_states vector for cross attention.
activation_fn (`str`, *optional*, defaults to `"geglu"`):
Activation function to be used in feed-forward.
num_embeds_ada_norm (`int`, *optional*):
The number of diffusion steps used during training. See `Transformer2DModel`.
attention_bias (`bool`, defaults to `False`):
Configure if the attentions should contain a bias parameter.
only_cross_attention (`bool`, defaults to `False`):
Whether to use only cross-attention layers. In this case two cross attention layers are used.
double_self_attention (`bool`, defaults to `False`):
Whether to use two self-attention layers. In this case no cross attention layers are used.
upcast_attention (`bool`, defaults to `False`):
Whether to upcast the attention computation to float32. This is useful for mixed precision training.
norm_elementwise_affine (`bool`, defaults to `True`):
Whether to use learnable elementwise affine parameters for normalization.
norm_type (`str`, defaults to `"layer_norm"`):
The normalization layer to use. Can be `"layer_norm"`, `"ada_norm"` or `"ada_norm_zero"`.
final_dropout (`bool` defaults to `False`):
Whether to apply a final dropout after the last feed-forward layer.
attention_type (`str`, defaults to `"default"`):
The type of attention to use. Can be `"default"` or `"gated"` or `"gated-text-image"`.
positional_embeddings (`str`, *optional*):
The type of positional embeddings to apply to.
num_positional_embeddings (`int`, *optional*, defaults to `None`):
The maximum number of positional embeddings to apply.
ff_inner_dim (`int`, *optional*):
Hidden dimension of feed-forward MLP.
ff_bias (`bool`, defaults to `True`):
Whether or not to use bias in feed-forward MLP.
attention_out_bias (`bool`, defaults to `True`):
Whether or not to use bias in attention output project layer.
context_length (`int`, defaults to `16`):
The maximum number of frames that the FreeNoise block processes at once.
context_stride (`int`, defaults to `4`):
The number of frames to be skipped before starting to process a new batch of `context_length` frames.
weighting_scheme (`str`, defaults to `"pyramid"`):
The weighting scheme to use for weighting averaging of processed latent frames. As described in the
Equation 9. of the [FreeNoise](https://arxiv.org/abs/2310.15169) paper, "pyramid" is the default setting
used.
"""
def __init__(
self,
dim: int,
num_attention_heads: int,
attention_head_dim: int,
dropout: float = 0.0,
cross_attention_dim: Optional[int] = None,
activation_fn: str = "geglu",
num_embeds_ada_norm: Optional[int] = None,
attention_bias: bool = False,
only_cross_attention: bool = False,
double_self_attention: bool = False,
upcast_attention: bool = False,
norm_elementwise_affine: bool = True,
norm_type: str = "layer_norm",
norm_eps: float = 1e-5,
final_dropout: bool = False,
positional_embeddings: Optional[str] = None,
num_positional_embeddings: Optional[int] = None,
ff_inner_dim: Optional[int] = None,
ff_bias: bool = True,
attention_out_bias: bool = True,
context_length: int = 16,
context_stride: int = 4,
weighting_scheme: str = "pyramid",
):
super().__init__()
self.dim = dim
self.num_attention_heads = num_attention_heads
self.attention_head_dim = attention_head_dim
self.dropout = dropout
self.cross_attention_dim = cross_attention_dim
self.activation_fn = activation_fn
self.attention_bias = attention_bias
self.double_self_attention = double_self_attention
self.norm_elementwise_affine = norm_elementwise_affine
self.positional_embeddings = positional_embeddings
self.num_positional_embeddings = num_positional_embeddings
self.only_cross_attention = only_cross_attention
self.set_free_noise_properties(context_length, context_stride, weighting_scheme)
# We keep these boolean flags for backward-compatibility.
self.use_ada_layer_norm_zero = (num_embeds_ada_norm is not None) and norm_type == "ada_norm_zero"
self.use_ada_layer_norm = (num_embeds_ada_norm is not None) and norm_type == "ada_norm"
self.use_ada_layer_norm_single = norm_type == "ada_norm_single"
self.use_layer_norm = norm_type == "layer_norm"
self.use_ada_layer_norm_continuous = norm_type == "ada_norm_continuous"
if norm_type in ("ada_norm", "ada_norm_zero") and num_embeds_ada_norm is None:
raise ValueError(
f"`norm_type` is set to {norm_type}, but `num_embeds_ada_norm` is not defined. Please make sure to"
f" define `num_embeds_ada_norm` if setting `norm_type` to {norm_type}."
)
self.norm_type = norm_type
self.num_embeds_ada_norm = num_embeds_ada_norm
if positional_embeddings and (num_positional_embeddings is None):
raise ValueError(
"If `positional_embedding` type is defined, `num_positition_embeddings` must also be defined."
)
if positional_embeddings == "sinusoidal":
self.pos_embed = SinusoidalPositionalEmbedding(dim, max_seq_length=num_positional_embeddings)
else:
self.pos_embed = None
# Define 3 blocks. Each block has its own normalization layer.
# 1. Self-Attn
self.norm1 = nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine, eps=norm_eps)
self.attn1 = Attention(
query_dim=dim,
heads=num_attention_heads,
dim_head=attention_head_dim,
dropout=dropout,
bias=attention_bias,
cross_attention_dim=cross_attention_dim if only_cross_attention else None,
upcast_attention=upcast_attention,
out_bias=attention_out_bias,
)
# 2. Cross-Attn
if cross_attention_dim is not None or double_self_attention:
self.norm2 = nn.LayerNorm(dim, norm_eps, norm_elementwise_affine)
self.attn2 = Attention(
query_dim=dim,
cross_attention_dim=cross_attention_dim if not double_self_attention else None,
heads=num_attention_heads,
dim_head=attention_head_dim,
dropout=dropout,
bias=attention_bias,
upcast_attention=upcast_attention,
out_bias=attention_out_bias,
) # is self-attn if encoder_hidden_states is none
# 3. Feed-forward
self.ff = FeedForward(
dim,
dropout=dropout,
activation_fn=activation_fn,
final_dropout=final_dropout,
inner_dim=ff_inner_dim,
bias=ff_bias,
)
self.norm3 = nn.LayerNorm(dim, norm_eps, norm_elementwise_affine)
# let chunk size default to None
self._chunk_size = None
self._chunk_dim = 0
def _get_frame_indices(self, num_frames: int) -> List[Tuple[int, int]]:
frame_indices = []
for i in range(0, num_frames - self.context_length + 1, self.context_stride):
window_start = i
window_end = min(num_frames, i + self.context_length)
frame_indices.append((window_start, window_end))
return frame_indices
def _get_frame_weights(self, num_frames: int, weighting_scheme: str = "pyramid") -> List[float]:
if weighting_scheme == "flat":
weights = [1.0] * num_frames
elif weighting_scheme == "pyramid":
if num_frames % 2 == 0:
# num_frames = 4 => [1, 2, 2, 1]
mid = num_frames // 2
weights = list(range(1, mid + 1))
weights = weights + weights[::-1]
else:
# num_frames = 5 => [1, 2, 3, 2, 1]
mid = (num_frames + 1) // 2
weights = list(range(1, mid))
weights = weights + [mid] + weights[::-1]
elif weighting_scheme == "delayed_reverse_sawtooth":
if num_frames % 2 == 0:
# num_frames = 4 => [0.01, 2, 2, 1]
mid = num_frames // 2
weights = [0.01] * (mid - 1) + [mid]
weights = weights + list(range(mid, 0, -1))
else:
# num_frames = 5 => [0.01, 0.01, 3, 2, 1]
mid = (num_frames + 1) // 2
weights = [0.01] * mid
weights = weights + list(range(mid, 0, -1))
else:
raise ValueError(f"Unsupported value for weighting_scheme={weighting_scheme}")
return weights
def set_free_noise_properties(
self, context_length: int, context_stride: int, weighting_scheme: str = "pyramid"
) -> None:
self.context_length = context_length
self.context_stride = context_stride
self.weighting_scheme = weighting_scheme
def set_chunk_feed_forward(self, chunk_size: Optional[int], dim: int = 0) -> None:
# Sets chunk feed-forward
self._chunk_size = chunk_size
self._chunk_dim = dim
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
encoder_hidden_states: Optional[torch.Tensor] = None,
encoder_attention_mask: Optional[torch.Tensor] = None,
cross_attention_kwargs: Dict[str, Any] = None,
*args,
**kwargs,
) -> torch.Tensor:
if cross_attention_kwargs is not None:
if cross_attention_kwargs.get("scale", None) is not None:
logger.warning("Passing `scale` to `cross_attention_kwargs` is deprecated. `scale` will be ignored.")
cross_attention_kwargs = cross_attention_kwargs.copy() if cross_attention_kwargs is not None else {}
# hidden_states: [B x H x W, F, C]
device = hidden_states.device
dtype = hidden_states.dtype
num_frames = hidden_states.size(1)
frame_indices = self._get_frame_indices(num_frames)
frame_weights = self._get_frame_weights(self.context_length, self.weighting_scheme)
frame_weights = torch.tensor(frame_weights, device=device, dtype=dtype).unsqueeze(0).unsqueeze(-1)
is_last_frame_batch_complete = frame_indices[-1][1] == num_frames
# Handle out-of-bounds case if num_frames isn't perfectly divisible by context_length
# For example, num_frames=25, context_length=16, context_stride=4, then we expect the ranges:
# [(0, 16), (4, 20), (8, 24), (10, 26)]
if not is_last_frame_batch_complete:
if num_frames < self.context_length:
raise ValueError(f"Expected {num_frames=} to be greater or equal than {self.context_length=}")
last_frame_batch_length = num_frames - frame_indices[-1][1]
frame_indices.append((num_frames - self.context_length, num_frames))
num_times_accumulated = torch.zeros((1, num_frames, 1), device=device)
accumulated_values = torch.zeros_like(hidden_states)
for i, (frame_start, frame_end) in enumerate(frame_indices):
# The reason for slicing here is to ensure that if (frame_end - frame_start) is to handle
# cases like frame_indices=[(0, 16), (16, 20)], if the user provided a video with 19 frames, or
# essentially a non-multiple of `context_length`.
weights = torch.ones_like(num_times_accumulated[:, frame_start:frame_end])
weights *= frame_weights
hidden_states_chunk = hidden_states[:, frame_start:frame_end]
# Notice that normalization is always applied before the real computation in the following blocks.
# 1. Self-Attention
norm_hidden_states = self.norm1(hidden_states_chunk)
if self.pos_embed is not None:
norm_hidden_states = self.pos_embed(norm_hidden_states)
attn_output = self.attn1(
norm_hidden_states,
encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None,
attention_mask=attention_mask,
**cross_attention_kwargs,
)
hidden_states_chunk = attn_output + hidden_states_chunk
if hidden_states_chunk.ndim == 4:
hidden_states_chunk = hidden_states_chunk.squeeze(1)
# 2. Cross-Attention
if self.attn2 is not None:
norm_hidden_states = self.norm2(hidden_states_chunk)
if self.pos_embed is not None and self.norm_type != "ada_norm_single":
norm_hidden_states = self.pos_embed(norm_hidden_states)
attn_output = self.attn2(
norm_hidden_states,
encoder_hidden_states=encoder_hidden_states,
attention_mask=encoder_attention_mask,
**cross_attention_kwargs,
)
hidden_states_chunk = attn_output + hidden_states_chunk
if i == len(frame_indices) - 1 and not is_last_frame_batch_complete:
accumulated_values[:, -last_frame_batch_length:] += (
hidden_states_chunk[:, -last_frame_batch_length:] * weights[:, -last_frame_batch_length:]
)
num_times_accumulated[:, -last_frame_batch_length:] += weights[:, -last_frame_batch_length]
else:
accumulated_values[:, frame_start:frame_end] += hidden_states_chunk * weights
num_times_accumulated[:, frame_start:frame_end] += weights
# TODO(aryan): Maybe this could be done in a better way.
#
# Previously, this was:
# hidden_states = torch.where(
# num_times_accumulated > 0, accumulated_values / num_times_accumulated, accumulated_values
# )
#
# The reasoning for the change here is `torch.where` became a bottleneck at some point when golfing memory
# spikes. It is particularly noticeable when the number of frames is high. My understanding is that this comes
# from tensors being copied - which is why we resort to spliting and concatenating here. I've not particularly
# looked into this deeply because other memory optimizations led to more pronounced reductions.
hidden_states = torch.cat(
[
torch.where(num_times_split > 0, accumulated_split / num_times_split, accumulated_split)
for accumulated_split, num_times_split in zip(
accumulated_values.split(self.context_length, dim=1),
num_times_accumulated.split(self.context_length, dim=1),
)
],
dim=1,
).to(dtype)
# 3. Feed-forward
norm_hidden_states = self.norm3(hidden_states)
if self._chunk_size is not None:
ff_output = _chunked_feed_forward(self.ff, norm_hidden_states, self._chunk_dim, self._chunk_size)
else:
ff_output = self.ff(norm_hidden_states)
hidden_states = ff_output + hidden_states
if hidden_states.ndim == 4:
hidden_states = hidden_states.squeeze(1)
return hidden_states
class FeedForward(nn.Module):
r"""
A feed-forward layer.
Parameters:
dim (`int`): The number of channels in the input.
dim_out (`int`, *optional*): The number of channels in the output. If not given, defaults to `dim`.
mult (`int`, *optional*, defaults to 4): The multiplier to use for the hidden dimension.
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward.
final_dropout (`bool` *optional*, defaults to False): Apply a final dropout.
bias (`bool`, defaults to True): Whether to use a bias in the linear layer.
"""
def __init__(
self,
dim: int,
dim_out: Optional[int] = None,
mult: int = 4,
dropout: float = 0.0,
activation_fn: str = "geglu",
final_dropout: bool = False,
inner_dim=None,
bias: bool = True,
):
super().__init__()
if inner_dim is None:
inner_dim = int(dim * mult)
dim_out = dim_out if dim_out is not None else dim
if activation_fn == "gelu":
act_fn = GELU(dim, inner_dim, bias=bias)
if activation_fn == "gelu-approximate":
act_fn = GELU(dim, inner_dim, approximate="tanh", bias=bias)
elif activation_fn == "geglu":
act_fn = GEGLU(dim, inner_dim, bias=bias)
elif activation_fn == "geglu-approximate":
act_fn = ApproximateGELU(dim, inner_dim, bias=bias)
elif activation_fn == "swiglu":
act_fn = SwiGLU(dim, inner_dim, bias=bias)
self.net = nn.ModuleList([])
# project in
self.net.append(act_fn)
# project dropout
self.net.append(nn.Dropout(dropout))
# project out
self.net.append(nn.Linear(inner_dim, dim_out, bias=bias))
# FF as used in Vision Transformer, MLP-Mixer, etc. have a final dropout
if final_dropout:
self.net.append(nn.Dropout(dropout))
def forward(self, hidden_states: torch.Tensor, *args, **kwargs) -> torch.Tensor:
if len(args) > 0 or kwargs.get("scale", None) is not None:
deprecation_message = "The `scale` argument is deprecated and will be ignored. Please remove it, as passing it will raise an error in the future. `scale` should directly be passed while calling the underlying pipeline component i.e., via `cross_attention_kwargs`."
deprecate("scale", "1.0.0", deprecation_message)
for module in self.net:
hidden_states = module(hidden_states)
return hidden_states