|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import inspect |
|
from typing import Any, Callable, Dict, List, Optional, Union |
|
|
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
from transformers import ( |
|
CLIPTextModelWithProjection, |
|
CLIPTokenizer, |
|
T5EncoderModel, |
|
T5TokenizerFast, |
|
) |
|
|
|
from diffusers.image_processor import VaeImageProcessor |
|
from diffusers.loaders import FromSingleFileMixin, SD3LoraLoaderMixin |
|
from diffusers.models.autoencoders import AutoencoderKL |
|
from diffusers.schedulers import FlowMatchEulerDiscreteScheduler |
|
from diffusers.utils import ( |
|
USE_PEFT_BACKEND, |
|
is_torch_xla_available, |
|
logging, |
|
replace_example_docstring, |
|
scale_lora_layers, |
|
unscale_lora_layers, |
|
) |
|
from diffusers.utils.torch_utils import randn_tensor |
|
from diffusers.pipelines.pipeline_utils import DiffusionPipeline |
|
from diffusers.pipelines.stable_diffusion_3.pipeline_output import StableDiffusion3PipelineOutput |
|
|
|
from models.resampler import TimeResampler |
|
from models.transformer_sd3 import SD3Transformer2DModel |
|
from diffusers.models.normalization import RMSNorm |
|
from einops import rearrange |
|
|
|
|
|
if is_torch_xla_available(): |
|
import torch_xla.core.xla_model as xm |
|
|
|
XLA_AVAILABLE = True |
|
else: |
|
XLA_AVAILABLE = False |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
EXAMPLE_DOC_STRING = """ |
|
Examples: |
|
```py |
|
>>> import torch |
|
>>> from diffusers import StableDiffusion3Pipeline |
|
|
|
>>> pipe = StableDiffusion3Pipeline.from_pretrained( |
|
... "stabilityai/stable-diffusion-3-medium-diffusers", torch_dtype=torch.float16 |
|
... ) |
|
>>> pipe.to("cuda") |
|
>>> prompt = "A cat holding a sign that says hello world" |
|
>>> image = pipe(prompt).images[0] |
|
>>> image.save("sd3.png") |
|
``` |
|
""" |
|
|
|
|
|
class AdaLayerNorm(nn.Module): |
|
""" |
|
Norm layer adaptive layer norm zero (adaLN-Zero). |
|
|
|
Parameters: |
|
embedding_dim (`int`): The size of each embedding vector. |
|
num_embeddings (`int`): The size of the embeddings dictionary. |
|
""" |
|
|
|
def __init__(self, embedding_dim: int, time_embedding_dim=None, mode='normal'): |
|
super().__init__() |
|
|
|
self.silu = nn.SiLU() |
|
num_params_dict = dict( |
|
zero=6, |
|
normal=2, |
|
) |
|
num_params = num_params_dict[mode] |
|
self.linear = nn.Linear(time_embedding_dim or embedding_dim, num_params * embedding_dim, bias=True) |
|
self.norm = nn.LayerNorm(embedding_dim, elementwise_affine=False, eps=1e-6) |
|
self.mode = mode |
|
|
|
def forward( |
|
self, |
|
x, |
|
hidden_dtype = None, |
|
emb = None, |
|
): |
|
emb = self.linear(self.silu(emb)) |
|
if self.mode == 'normal': |
|
shift_msa, scale_msa = emb.chunk(2, dim=1) |
|
x = self.norm(x) * (1 + scale_msa[:, None]) + shift_msa[:, None] |
|
return x |
|
|
|
elif self.mode == 'zero': |
|
shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = emb.chunk(6, dim=1) |
|
x = self.norm(x) * (1 + scale_msa[:, None]) + shift_msa[:, None] |
|
return x, gate_msa, shift_mlp, scale_mlp, gate_mlp |
|
|
|
|
|
class JointIPAttnProcessor(torch.nn.Module): |
|
"""Attention processor used typically in processing the SD3-like self-attention projections.""" |
|
|
|
def __init__( |
|
self, |
|
hidden_size=None, |
|
cross_attention_dim=None, |
|
ip_hidden_states_dim=None, |
|
ip_encoder_hidden_states_dim=None, |
|
head_dim=None, |
|
timesteps_emb_dim=1280, |
|
): |
|
super().__init__() |
|
|
|
self.norm_ip = AdaLayerNorm(ip_hidden_states_dim, time_embedding_dim=timesteps_emb_dim) |
|
self.to_k_ip = nn.Linear(ip_hidden_states_dim, hidden_size, bias=False) |
|
self.to_v_ip = nn.Linear(ip_hidden_states_dim, hidden_size, bias=False) |
|
self.norm_q = RMSNorm(head_dim, 1e-6) |
|
self.norm_k = RMSNorm(head_dim, 1e-6) |
|
self.norm_ip_k = RMSNorm(head_dim, 1e-6) |
|
|
|
|
|
def __call__( |
|
self, |
|
attn, |
|
hidden_states: torch.FloatTensor, |
|
encoder_hidden_states: torch.FloatTensor = None, |
|
attention_mask: Optional[torch.FloatTensor] = None, |
|
emb_dict=None, |
|
*args, |
|
**kwargs, |
|
) -> torch.FloatTensor: |
|
residual = hidden_states |
|
|
|
batch_size = hidden_states.shape[0] |
|
|
|
|
|
query = attn.to_q(hidden_states) |
|
key = attn.to_k(hidden_states) |
|
value = attn.to_v(hidden_states) |
|
img_query = query |
|
img_key = key |
|
img_value = value |
|
|
|
inner_dim = key.shape[-1] |
|
head_dim = inner_dim // attn.heads |
|
|
|
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) |
|
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) |
|
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) |
|
|
|
if attn.norm_q is not None: |
|
query = attn.norm_q(query) |
|
if attn.norm_k is not None: |
|
key = attn.norm_k(key) |
|
|
|
|
|
if encoder_hidden_states is not None: |
|
encoder_hidden_states_query_proj = attn.add_q_proj(encoder_hidden_states) |
|
encoder_hidden_states_key_proj = attn.add_k_proj(encoder_hidden_states) |
|
encoder_hidden_states_value_proj = attn.add_v_proj(encoder_hidden_states) |
|
|
|
encoder_hidden_states_query_proj = encoder_hidden_states_query_proj.view( |
|
batch_size, -1, attn.heads, head_dim |
|
).transpose(1, 2) |
|
encoder_hidden_states_key_proj = encoder_hidden_states_key_proj.view( |
|
batch_size, -1, attn.heads, head_dim |
|
).transpose(1, 2) |
|
encoder_hidden_states_value_proj = encoder_hidden_states_value_proj.view( |
|
batch_size, -1, attn.heads, head_dim |
|
).transpose(1, 2) |
|
|
|
if attn.norm_added_q is not None: |
|
encoder_hidden_states_query_proj = attn.norm_added_q(encoder_hidden_states_query_proj) |
|
if attn.norm_added_k is not None: |
|
encoder_hidden_states_key_proj = attn.norm_added_k(encoder_hidden_states_key_proj) |
|
|
|
query = torch.cat([query, encoder_hidden_states_query_proj], dim=2) |
|
key = torch.cat([key, encoder_hidden_states_key_proj], dim=2) |
|
value = torch.cat([value, encoder_hidden_states_value_proj], dim=2) |
|
|
|
hidden_states = F.scaled_dot_product_attention(query, key, value, dropout_p=0.0, is_causal=False) |
|
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) |
|
hidden_states = hidden_states.to(query.dtype) |
|
|
|
if encoder_hidden_states is not None: |
|
|
|
hidden_states, encoder_hidden_states = ( |
|
hidden_states[:, : residual.shape[1]], |
|
hidden_states[:, residual.shape[1] :], |
|
) |
|
if not attn.context_pre_only: |
|
encoder_hidden_states = attn.to_add_out(encoder_hidden_states) |
|
|
|
|
|
|
|
ip_hidden_states = emb_dict.get('ip_hidden_states', None) |
|
ip_hidden_states = self.get_ip_hidden_states( |
|
attn, |
|
img_query, |
|
ip_hidden_states, |
|
img_key, |
|
img_value, |
|
None, |
|
None, |
|
emb_dict['temb'], |
|
) |
|
if ip_hidden_states is not None: |
|
hidden_states = hidden_states + ip_hidden_states * emb_dict.get('scale', 1.0) |
|
|
|
|
|
|
|
hidden_states = attn.to_out[0](hidden_states) |
|
|
|
hidden_states = attn.to_out[1](hidden_states) |
|
|
|
if encoder_hidden_states is not None: |
|
return hidden_states, encoder_hidden_states |
|
else: |
|
return hidden_states |
|
|
|
|
|
def get_ip_hidden_states(self, attn, query, ip_hidden_states, img_key=None, img_value=None, text_key=None, text_value=None, temb=None): |
|
if ip_hidden_states is None: |
|
return None |
|
|
|
if not hasattr(self, 'to_k_ip') or not hasattr(self, 'to_v_ip'): |
|
return None |
|
|
|
|
|
norm_ip_hidden_states = self.norm_ip(ip_hidden_states, emb=temb) |
|
|
|
|
|
ip_key = self.to_k_ip(norm_ip_hidden_states) |
|
ip_value = self.to_v_ip(norm_ip_hidden_states) |
|
|
|
|
|
query = rearrange(query, 'b l (h d) -> b h l d', h=attn.heads) |
|
img_key = rearrange(img_key, 'b l (h d) -> b h l d', h=attn.heads) |
|
img_value = rearrange(img_value, 'b l (h d) -> b h l d', h=attn.heads) |
|
ip_key = rearrange(ip_key, 'b l (h d) -> b h l d', h=attn.heads) |
|
ip_value = rearrange(ip_value, 'b l (h d) -> b h l d', h=attn.heads) |
|
|
|
|
|
query = self.norm_q(query) |
|
img_key = self.norm_k(img_key) |
|
ip_key = self.norm_ip_k(ip_key) |
|
|
|
|
|
key = torch.cat([img_key, ip_key], dim=2) |
|
value = torch.cat([img_value, ip_value], dim=2) |
|
|
|
|
|
ip_hidden_states = F.scaled_dot_product_attention(query, key, value, dropout_p=0.0, is_causal=False) |
|
ip_hidden_states = rearrange(ip_hidden_states, 'b h l d -> b l (h d)') |
|
ip_hidden_states = ip_hidden_states.to(query.dtype) |
|
return ip_hidden_states |
|
|
|
|
|
|
|
def retrieve_timesteps( |
|
scheduler, |
|
num_inference_steps: Optional[int] = None, |
|
device: Optional[Union[str, torch.device]] = None, |
|
timesteps: Optional[List[int]] = None, |
|
sigmas: Optional[List[float]] = None, |
|
**kwargs, |
|
): |
|
""" |
|
Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles |
|
custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`. |
|
|
|
Args: |
|
scheduler (`SchedulerMixin`): |
|
The scheduler to get timesteps from. |
|
num_inference_steps (`int`): |
|
The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps` |
|
must be `None`. |
|
device (`str` or `torch.device`, *optional*): |
|
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved. |
|
timesteps (`List[int]`, *optional*): |
|
Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed, |
|
`num_inference_steps` and `sigmas` must be `None`. |
|
sigmas (`List[float]`, *optional*): |
|
Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed, |
|
`num_inference_steps` and `timesteps` must be `None`. |
|
|
|
Returns: |
|
`Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the |
|
second element is the number of inference steps. |
|
""" |
|
if timesteps is not None and sigmas is not None: |
|
raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values") |
|
if timesteps is not None: |
|
accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys()) |
|
if not accepts_timesteps: |
|
raise ValueError( |
|
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom" |
|
f" timestep schedules. Please check whether you are using the correct scheduler." |
|
) |
|
scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs) |
|
timesteps = scheduler.timesteps |
|
num_inference_steps = len(timesteps) |
|
elif sigmas is not None: |
|
accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys()) |
|
if not accept_sigmas: |
|
raise ValueError( |
|
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom" |
|
f" sigmas schedules. Please check whether you are using the correct scheduler." |
|
) |
|
scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs) |
|
timesteps = scheduler.timesteps |
|
num_inference_steps = len(timesteps) |
|
else: |
|
scheduler.set_timesteps(num_inference_steps, device=device, **kwargs) |
|
timesteps = scheduler.timesteps |
|
return timesteps, num_inference_steps |
|
|
|
|
|
class StableDiffusion3Pipeline(DiffusionPipeline, SD3LoraLoaderMixin, FromSingleFileMixin): |
|
r""" |
|
Args: |
|
transformer ([`SD3Transformer2DModel`]): |
|
Conditional Transformer (MMDiT) architecture to denoise the encoded image latents. |
|
scheduler ([`FlowMatchEulerDiscreteScheduler`]): |
|
A scheduler to be used in combination with `transformer` to denoise the encoded image latents. |
|
vae ([`AutoencoderKL`]): |
|
Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations. |
|
text_encoder ([`CLIPTextModelWithProjection`]): |
|
[CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModelWithProjection), |
|
specifically the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant, |
|
with an additional added projection layer that is initialized with a diagonal matrix with the `hidden_size` |
|
as its dimension. |
|
text_encoder_2 ([`CLIPTextModelWithProjection`]): |
|
[CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModelWithProjection), |
|
specifically the |
|
[laion/CLIP-ViT-bigG-14-laion2B-39B-b160k](https://huggingface.co/laion/CLIP-ViT-bigG-14-laion2B-39B-b160k) |
|
variant. |
|
text_encoder_3 ([`T5EncoderModel`]): |
|
Frozen text-encoder. Stable Diffusion 3 uses |
|
[T5](https://huggingface.co/docs/transformers/model_doc/t5#transformers.T5EncoderModel), specifically the |
|
[t5-v1_1-xxl](https://huggingface.co/google/t5-v1_1-xxl) variant. |
|
tokenizer (`CLIPTokenizer`): |
|
Tokenizer of class |
|
[CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer). |
|
tokenizer_2 (`CLIPTokenizer`): |
|
Second Tokenizer of class |
|
[CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer). |
|
tokenizer_3 (`T5TokenizerFast`): |
|
Tokenizer of class |
|
[T5Tokenizer](https://huggingface.co/docs/transformers/model_doc/t5#transformers.T5Tokenizer). |
|
""" |
|
|
|
model_cpu_offload_seq = "text_encoder->text_encoder_2->text_encoder_3->transformer->vae" |
|
_optional_components = [] |
|
_callback_tensor_inputs = ["latents", "prompt_embeds", "negative_prompt_embeds", "negative_pooled_prompt_embeds"] |
|
|
|
def __init__( |
|
self, |
|
transformer: SD3Transformer2DModel, |
|
scheduler: FlowMatchEulerDiscreteScheduler, |
|
vae: AutoencoderKL, |
|
text_encoder: CLIPTextModelWithProjection, |
|
tokenizer: CLIPTokenizer, |
|
text_encoder_2: CLIPTextModelWithProjection, |
|
tokenizer_2: CLIPTokenizer, |
|
text_encoder_3: T5EncoderModel, |
|
tokenizer_3: T5TokenizerFast, |
|
): |
|
super().__init__() |
|
|
|
self.register_modules( |
|
vae=vae, |
|
text_encoder=text_encoder, |
|
text_encoder_2=text_encoder_2, |
|
text_encoder_3=text_encoder_3, |
|
tokenizer=tokenizer, |
|
tokenizer_2=tokenizer_2, |
|
tokenizer_3=tokenizer_3, |
|
transformer=transformer, |
|
scheduler=scheduler, |
|
) |
|
self.vae_scale_factor = ( |
|
2 ** (len(self.vae.config.block_out_channels) - 1) if hasattr(self, "vae") and self.vae is not None else 8 |
|
) |
|
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor) |
|
self.tokenizer_max_length = ( |
|
self.tokenizer.model_max_length if hasattr(self, "tokenizer") and self.tokenizer is not None else 77 |
|
) |
|
self.default_sample_size = ( |
|
self.transformer.config.sample_size |
|
if hasattr(self, "transformer") and self.transformer is not None |
|
else 128 |
|
) |
|
|
|
def _get_t5_prompt_embeds( |
|
self, |
|
prompt: Union[str, List[str]] = None, |
|
num_images_per_prompt: int = 1, |
|
max_sequence_length: int = 256, |
|
device: Optional[torch.device] = None, |
|
dtype: Optional[torch.dtype] = None, |
|
): |
|
device = device or self._execution_device |
|
dtype = dtype or self.text_encoder.dtype |
|
|
|
prompt = [prompt] if isinstance(prompt, str) else prompt |
|
batch_size = len(prompt) |
|
|
|
if self.text_encoder_3 is None: |
|
return torch.zeros( |
|
( |
|
batch_size * num_images_per_prompt, |
|
self.tokenizer_max_length, |
|
self.transformer.config.joint_attention_dim, |
|
), |
|
device=device, |
|
dtype=dtype, |
|
) |
|
|
|
text_inputs = self.tokenizer_3( |
|
prompt, |
|
padding="max_length", |
|
max_length=max_sequence_length, |
|
truncation=True, |
|
add_special_tokens=True, |
|
return_tensors="pt", |
|
) |
|
text_input_ids = text_inputs.input_ids |
|
untruncated_ids = self.tokenizer_3(prompt, padding="longest", return_tensors="pt").input_ids |
|
|
|
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids): |
|
removed_text = self.tokenizer_3.batch_decode(untruncated_ids[:, self.tokenizer_max_length - 1 : -1]) |
|
logger.warning( |
|
"The following part of your input was truncated because `max_sequence_length` is set to " |
|
f" {max_sequence_length} tokens: {removed_text}" |
|
) |
|
|
|
prompt_embeds = self.text_encoder_3(text_input_ids.to(device))[0] |
|
|
|
dtype = self.text_encoder_3.dtype |
|
prompt_embeds = prompt_embeds.to(dtype=dtype, device=device) |
|
|
|
_, seq_len, _ = prompt_embeds.shape |
|
|
|
|
|
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) |
|
prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) |
|
|
|
return prompt_embeds |
|
|
|
def _get_clip_prompt_embeds( |
|
self, |
|
prompt: Union[str, List[str]], |
|
num_images_per_prompt: int = 1, |
|
device: Optional[torch.device] = None, |
|
clip_skip: Optional[int] = None, |
|
clip_model_index: int = 0, |
|
): |
|
device = device or self._execution_device |
|
|
|
clip_tokenizers = [self.tokenizer, self.tokenizer_2] |
|
clip_text_encoders = [self.text_encoder, self.text_encoder_2] |
|
|
|
tokenizer = clip_tokenizers[clip_model_index] |
|
text_encoder = clip_text_encoders[clip_model_index] |
|
|
|
prompt = [prompt] if isinstance(prompt, str) else prompt |
|
batch_size = len(prompt) |
|
|
|
text_inputs = tokenizer( |
|
prompt, |
|
padding="max_length", |
|
max_length=self.tokenizer_max_length, |
|
truncation=True, |
|
return_tensors="pt", |
|
) |
|
|
|
text_input_ids = text_inputs.input_ids |
|
untruncated_ids = tokenizer(prompt, padding="longest", return_tensors="pt").input_ids |
|
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids): |
|
removed_text = tokenizer.batch_decode(untruncated_ids[:, self.tokenizer_max_length - 1 : -1]) |
|
logger.warning( |
|
"The following part of your input was truncated because CLIP can only handle sequences up to" |
|
f" {self.tokenizer_max_length} tokens: {removed_text}" |
|
) |
|
prompt_embeds = text_encoder(text_input_ids.to(device), output_hidden_states=True) |
|
pooled_prompt_embeds = prompt_embeds[0] |
|
|
|
if clip_skip is None: |
|
prompt_embeds = prompt_embeds.hidden_states[-2] |
|
else: |
|
prompt_embeds = prompt_embeds.hidden_states[-(clip_skip + 2)] |
|
|
|
prompt_embeds = prompt_embeds.to(dtype=self.text_encoder.dtype, device=device) |
|
|
|
_, seq_len, _ = prompt_embeds.shape |
|
|
|
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) |
|
prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) |
|
|
|
pooled_prompt_embeds = pooled_prompt_embeds.repeat(1, num_images_per_prompt, 1) |
|
pooled_prompt_embeds = pooled_prompt_embeds.view(batch_size * num_images_per_prompt, -1) |
|
|
|
return prompt_embeds, pooled_prompt_embeds |
|
|
|
def encode_prompt( |
|
self, |
|
prompt: Union[str, List[str]], |
|
prompt_2: Union[str, List[str]], |
|
prompt_3: Union[str, List[str]], |
|
device: Optional[torch.device] = None, |
|
num_images_per_prompt: int = 1, |
|
do_classifier_free_guidance: bool = True, |
|
negative_prompt: Optional[Union[str, List[str]]] = None, |
|
negative_prompt_2: Optional[Union[str, List[str]]] = None, |
|
negative_prompt_3: Optional[Union[str, List[str]]] = None, |
|
prompt_embeds: Optional[torch.FloatTensor] = None, |
|
negative_prompt_embeds: Optional[torch.FloatTensor] = None, |
|
pooled_prompt_embeds: Optional[torch.FloatTensor] = None, |
|
negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None, |
|
clip_skip: Optional[int] = None, |
|
max_sequence_length: int = 256, |
|
lora_scale: Optional[float] = None, |
|
): |
|
r""" |
|
|
|
Args: |
|
prompt (`str` or `List[str]`, *optional*): |
|
prompt to be encoded |
|
prompt_2 (`str` or `List[str]`, *optional*): |
|
The prompt or prompts to be sent to the `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is |
|
used in all text-encoders |
|
prompt_3 (`str` or `List[str]`, *optional*): |
|
The prompt or prompts to be sent to the `tokenizer_3` and `text_encoder_3`. If not defined, `prompt` is |
|
used in all text-encoders |
|
device: (`torch.device`): |
|
torch device |
|
num_images_per_prompt (`int`): |
|
number of images that should be generated per prompt |
|
do_classifier_free_guidance (`bool`): |
|
whether to use classifier free guidance or not |
|
negative_prompt (`str` or `List[str]`, *optional*): |
|
The prompt or prompts not to guide the image generation. If not defined, one has to pass |
|
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is |
|
less than `1`). |
|
negative_prompt_2 (`str` or `List[str]`, *optional*): |
|
The prompt or prompts not to guide the image generation to be sent to `tokenizer_2` and |
|
`text_encoder_2`. If not defined, `negative_prompt` is used in all the text-encoders. |
|
negative_prompt_2 (`str` or `List[str]`, *optional*): |
|
The prompt or prompts not to guide the image generation to be sent to `tokenizer_3` and |
|
`text_encoder_3`. If not defined, `negative_prompt` is used in both text-encoders |
|
prompt_embeds (`torch.FloatTensor`, *optional*): |
|
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not |
|
provided, text embeddings will be generated from `prompt` input argument. |
|
negative_prompt_embeds (`torch.FloatTensor`, *optional*): |
|
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt |
|
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input |
|
argument. |
|
pooled_prompt_embeds (`torch.FloatTensor`, *optional*): |
|
Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. |
|
If not provided, pooled text embeddings will be generated from `prompt` input argument. |
|
negative_pooled_prompt_embeds (`torch.FloatTensor`, *optional*): |
|
Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt |
|
weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt` |
|
input argument. |
|
clip_skip (`int`, *optional*): |
|
Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that |
|
the output of the pre-final layer will be used for computing the prompt embeddings. |
|
lora_scale (`float`, *optional*): |
|
A lora scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded. |
|
""" |
|
device = device or self._execution_device |
|
|
|
|
|
|
|
if lora_scale is not None and isinstance(self, SD3LoraLoaderMixin): |
|
self._lora_scale = lora_scale |
|
|
|
|
|
if self.text_encoder is not None and USE_PEFT_BACKEND: |
|
scale_lora_layers(self.text_encoder, lora_scale) |
|
if self.text_encoder_2 is not None and USE_PEFT_BACKEND: |
|
scale_lora_layers(self.text_encoder_2, lora_scale) |
|
|
|
prompt = [prompt] if isinstance(prompt, str) else prompt |
|
if prompt is not None: |
|
batch_size = len(prompt) |
|
else: |
|
batch_size = prompt_embeds.shape[0] |
|
|
|
if prompt_embeds is None: |
|
prompt_2 = prompt_2 or prompt |
|
prompt_2 = [prompt_2] if isinstance(prompt_2, str) else prompt_2 |
|
|
|
prompt_3 = prompt_3 or prompt |
|
prompt_3 = [prompt_3] if isinstance(prompt_3, str) else prompt_3 |
|
|
|
prompt_embed, pooled_prompt_embed = self._get_clip_prompt_embeds( |
|
prompt=prompt, |
|
device=device, |
|
num_images_per_prompt=num_images_per_prompt, |
|
clip_skip=clip_skip, |
|
clip_model_index=0, |
|
) |
|
prompt_2_embed, pooled_prompt_2_embed = self._get_clip_prompt_embeds( |
|
prompt=prompt_2, |
|
device=device, |
|
num_images_per_prompt=num_images_per_prompt, |
|
clip_skip=clip_skip, |
|
clip_model_index=1, |
|
) |
|
clip_prompt_embeds = torch.cat([prompt_embed, prompt_2_embed], dim=-1) |
|
|
|
t5_prompt_embed = self._get_t5_prompt_embeds( |
|
prompt=prompt_3, |
|
num_images_per_prompt=num_images_per_prompt, |
|
max_sequence_length=max_sequence_length, |
|
device=device, |
|
) |
|
|
|
clip_prompt_embeds = torch.nn.functional.pad( |
|
clip_prompt_embeds, (0, t5_prompt_embed.shape[-1] - clip_prompt_embeds.shape[-1]) |
|
) |
|
|
|
prompt_embeds = torch.cat([clip_prompt_embeds, t5_prompt_embed], dim=-2) |
|
pooled_prompt_embeds = torch.cat([pooled_prompt_embed, pooled_prompt_2_embed], dim=-1) |
|
|
|
if do_classifier_free_guidance and negative_prompt_embeds is None: |
|
negative_prompt = negative_prompt or "" |
|
negative_prompt_2 = negative_prompt_2 or negative_prompt |
|
negative_prompt_3 = negative_prompt_3 or negative_prompt |
|
|
|
|
|
negative_prompt = batch_size * [negative_prompt] if isinstance(negative_prompt, str) else negative_prompt |
|
negative_prompt_2 = ( |
|
batch_size * [negative_prompt_2] if isinstance(negative_prompt_2, str) else negative_prompt_2 |
|
) |
|
negative_prompt_3 = ( |
|
batch_size * [negative_prompt_3] if isinstance(negative_prompt_3, str) else negative_prompt_3 |
|
) |
|
|
|
if prompt is not None and type(prompt) is not type(negative_prompt): |
|
raise TypeError( |
|
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !=" |
|
f" {type(prompt)}." |
|
) |
|
elif batch_size != len(negative_prompt): |
|
raise ValueError( |
|
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:" |
|
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" |
|
" the batch size of `prompt`." |
|
) |
|
|
|
negative_prompt_embed, negative_pooled_prompt_embed = self._get_clip_prompt_embeds( |
|
negative_prompt, |
|
device=device, |
|
num_images_per_prompt=num_images_per_prompt, |
|
clip_skip=None, |
|
clip_model_index=0, |
|
) |
|
negative_prompt_2_embed, negative_pooled_prompt_2_embed = self._get_clip_prompt_embeds( |
|
negative_prompt_2, |
|
device=device, |
|
num_images_per_prompt=num_images_per_prompt, |
|
clip_skip=None, |
|
clip_model_index=1, |
|
) |
|
negative_clip_prompt_embeds = torch.cat([negative_prompt_embed, negative_prompt_2_embed], dim=-1) |
|
|
|
t5_negative_prompt_embed = self._get_t5_prompt_embeds( |
|
prompt=negative_prompt_3, |
|
num_images_per_prompt=num_images_per_prompt, |
|
max_sequence_length=max_sequence_length, |
|
device=device, |
|
) |
|
|
|
negative_clip_prompt_embeds = torch.nn.functional.pad( |
|
negative_clip_prompt_embeds, |
|
(0, t5_negative_prompt_embed.shape[-1] - negative_clip_prompt_embeds.shape[-1]), |
|
) |
|
|
|
negative_prompt_embeds = torch.cat([negative_clip_prompt_embeds, t5_negative_prompt_embed], dim=-2) |
|
negative_pooled_prompt_embeds = torch.cat( |
|
[negative_pooled_prompt_embed, negative_pooled_prompt_2_embed], dim=-1 |
|
) |
|
|
|
if self.text_encoder is not None: |
|
if isinstance(self, SD3LoraLoaderMixin) and USE_PEFT_BACKEND: |
|
|
|
unscale_lora_layers(self.text_encoder, lora_scale) |
|
|
|
if self.text_encoder_2 is not None: |
|
if isinstance(self, SD3LoraLoaderMixin) and USE_PEFT_BACKEND: |
|
|
|
unscale_lora_layers(self.text_encoder_2, lora_scale) |
|
|
|
return prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds |
|
|
|
def check_inputs( |
|
self, |
|
prompt, |
|
prompt_2, |
|
prompt_3, |
|
height, |
|
width, |
|
negative_prompt=None, |
|
negative_prompt_2=None, |
|
negative_prompt_3=None, |
|
prompt_embeds=None, |
|
negative_prompt_embeds=None, |
|
pooled_prompt_embeds=None, |
|
negative_pooled_prompt_embeds=None, |
|
callback_on_step_end_tensor_inputs=None, |
|
max_sequence_length=None, |
|
): |
|
if height % 8 != 0 or width % 8 != 0: |
|
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.") |
|
|
|
if callback_on_step_end_tensor_inputs is not None and not all( |
|
k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs |
|
): |
|
raise ValueError( |
|
f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}" |
|
) |
|
|
|
if prompt is not None and prompt_embeds is not None: |
|
raise ValueError( |
|
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to" |
|
" only forward one of the two." |
|
) |
|
elif prompt_2 is not None and prompt_embeds is not None: |
|
raise ValueError( |
|
f"Cannot forward both `prompt_2`: {prompt_2} and `prompt_embeds`: {prompt_embeds}. Please make sure to" |
|
" only forward one of the two." |
|
) |
|
elif prompt_3 is not None and prompt_embeds is not None: |
|
raise ValueError( |
|
f"Cannot forward both `prompt_3`: {prompt_2} and `prompt_embeds`: {prompt_embeds}. Please make sure to" |
|
" only forward one of the two." |
|
) |
|
elif prompt is None and prompt_embeds is None: |
|
raise ValueError( |
|
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined." |
|
) |
|
elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)): |
|
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") |
|
elif prompt_2 is not None and (not isinstance(prompt_2, str) and not isinstance(prompt_2, list)): |
|
raise ValueError(f"`prompt_2` has to be of type `str` or `list` but is {type(prompt_2)}") |
|
elif prompt_3 is not None and (not isinstance(prompt_3, str) and not isinstance(prompt_3, list)): |
|
raise ValueError(f"`prompt_3` has to be of type `str` or `list` but is {type(prompt_3)}") |
|
|
|
if negative_prompt is not None and negative_prompt_embeds is not None: |
|
raise ValueError( |
|
f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:" |
|
f" {negative_prompt_embeds}. Please make sure to only forward one of the two." |
|
) |
|
elif negative_prompt_2 is not None and negative_prompt_embeds is not None: |
|
raise ValueError( |
|
f"Cannot forward both `negative_prompt_2`: {negative_prompt_2} and `negative_prompt_embeds`:" |
|
f" {negative_prompt_embeds}. Please make sure to only forward one of the two." |
|
) |
|
elif negative_prompt_3 is not None and negative_prompt_embeds is not None: |
|
raise ValueError( |
|
f"Cannot forward both `negative_prompt_3`: {negative_prompt_3} and `negative_prompt_embeds`:" |
|
f" {negative_prompt_embeds}. Please make sure to only forward one of the two." |
|
) |
|
|
|
if prompt_embeds is not None and negative_prompt_embeds is not None: |
|
if prompt_embeds.shape != negative_prompt_embeds.shape: |
|
raise ValueError( |
|
"`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but" |
|
f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`" |
|
f" {negative_prompt_embeds.shape}." |
|
) |
|
|
|
if prompt_embeds is not None and pooled_prompt_embeds is None: |
|
raise ValueError( |
|
"If `prompt_embeds` are provided, `pooled_prompt_embeds` also have to be passed. Make sure to generate `pooled_prompt_embeds` from the same text encoder that was used to generate `prompt_embeds`." |
|
) |
|
|
|
if negative_prompt_embeds is not None and negative_pooled_prompt_embeds is None: |
|
raise ValueError( |
|
"If `negative_prompt_embeds` are provided, `negative_pooled_prompt_embeds` also have to be passed. Make sure to generate `negative_pooled_prompt_embeds` from the same text encoder that was used to generate `negative_prompt_embeds`." |
|
) |
|
|
|
if max_sequence_length is not None and max_sequence_length > 512: |
|
raise ValueError(f"`max_sequence_length` cannot be greater than 512 but is {max_sequence_length}") |
|
|
|
def prepare_latents( |
|
self, |
|
batch_size, |
|
num_channels_latents, |
|
height, |
|
width, |
|
dtype, |
|
device, |
|
generator, |
|
latents=None, |
|
): |
|
if latents is not None: |
|
return latents.to(device=device, dtype=dtype) |
|
|
|
shape = ( |
|
batch_size, |
|
num_channels_latents, |
|
int(height) // self.vae_scale_factor, |
|
int(width) // self.vae_scale_factor, |
|
) |
|
|
|
if isinstance(generator, list) and len(generator) != batch_size: |
|
raise ValueError( |
|
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" |
|
f" size of {batch_size}. Make sure the batch size matches the length of the generators." |
|
) |
|
|
|
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) |
|
|
|
return latents |
|
|
|
@property |
|
def guidance_scale(self): |
|
return self._guidance_scale |
|
|
|
@property |
|
def clip_skip(self): |
|
return self._clip_skip |
|
|
|
|
|
|
|
|
|
@property |
|
def do_classifier_free_guidance(self): |
|
return self._guidance_scale > 1 |
|
|
|
@property |
|
def joint_attention_kwargs(self): |
|
return self._joint_attention_kwargs |
|
|
|
@property |
|
def num_timesteps(self): |
|
return self._num_timesteps |
|
|
|
@property |
|
def interrupt(self): |
|
return self._interrupt |
|
|
|
|
|
@torch.inference_mode() |
|
def init_ipadapter(self, ip_adapter_path, image_encoder_path, nb_token, output_dim=2432): |
|
from transformers import SiglipVisionModel, SiglipImageProcessor |
|
state_dict = torch.load(ip_adapter_path, map_location="cpu") |
|
|
|
device, dtype = self.transformer.device, self.transformer.dtype |
|
image_encoder = SiglipVisionModel.from_pretrained(image_encoder_path) |
|
image_processor = SiglipImageProcessor.from_pretrained(image_encoder_path) |
|
image_encoder.eval() |
|
image_encoder.to(device, dtype=dtype) |
|
self.image_encoder = image_encoder |
|
self.clip_image_processor = image_processor |
|
|
|
sample_class = TimeResampler |
|
image_proj_model = sample_class( |
|
dim=1280, |
|
depth=4, |
|
dim_head=64, |
|
heads=20, |
|
num_queries=nb_token, |
|
embedding_dim=1152, |
|
output_dim=output_dim, |
|
ff_mult=4, |
|
timestep_in_dim=320, |
|
timestep_flip_sin_to_cos=True, |
|
timestep_freq_shift=0, |
|
) |
|
image_proj_model.eval() |
|
image_proj_model.to(device, dtype=dtype) |
|
key_name = image_proj_model.load_state_dict(state_dict["image_proj"], strict=False) |
|
print(f"=> loading image_proj_model: {key_name}") |
|
|
|
self.image_proj_model = image_proj_model |
|
|
|
|
|
attn_procs = {} |
|
transformer = self.transformer |
|
for idx_name, name in enumerate(transformer.attn_processors.keys()): |
|
hidden_size = transformer.config.attention_head_dim * transformer.config.num_attention_heads |
|
ip_hidden_states_dim = transformer.config.attention_head_dim * transformer.config.num_attention_heads |
|
ip_encoder_hidden_states_dim = transformer.config.caption_projection_dim |
|
|
|
attn_procs[name] = JointIPAttnProcessor( |
|
hidden_size=hidden_size, |
|
cross_attention_dim=transformer.config.caption_projection_dim, |
|
ip_hidden_states_dim=ip_hidden_states_dim, |
|
ip_encoder_hidden_states_dim=ip_encoder_hidden_states_dim, |
|
head_dim=transformer.config.attention_head_dim, |
|
timesteps_emb_dim=1280, |
|
).to(device, dtype=dtype) |
|
|
|
self.transformer.set_attn_processor(attn_procs) |
|
tmp_ip_layers = torch.nn.ModuleList(self.transformer.attn_processors.values()) |
|
|
|
key_name = tmp_ip_layers.load_state_dict(state_dict["ip_adapter"], strict=False) |
|
print(f"=> loading ip_adapter: {key_name}") |
|
|
|
|
|
@torch.inference_mode() |
|
def encode_clip_image_emb(self, clip_image, device, dtype): |
|
|
|
|
|
clip_image_tensor = self.clip_image_processor(images=clip_image, return_tensors="pt").pixel_values |
|
clip_image_tensor = clip_image_tensor.to(device, dtype=dtype) |
|
clip_image_embeds = self.image_encoder(clip_image_tensor, output_hidden_states=True).hidden_states[-2] |
|
clip_image_embeds = torch.cat([torch.zeros_like(clip_image_embeds), clip_image_embeds], dim=0) |
|
|
|
return clip_image_embeds |
|
|
|
|
|
|
|
@torch.no_grad() |
|
@replace_example_docstring(EXAMPLE_DOC_STRING) |
|
def __call__( |
|
self, |
|
prompt: Union[str, List[str]] = None, |
|
prompt_2: Optional[Union[str, List[str]]] = None, |
|
prompt_3: Optional[Union[str, List[str]]] = None, |
|
height: Optional[int] = None, |
|
width: Optional[int] = None, |
|
num_inference_steps: int = 28, |
|
timesteps: List[int] = None, |
|
guidance_scale: float = 7.0, |
|
negative_prompt: Optional[Union[str, List[str]]] = None, |
|
negative_prompt_2: Optional[Union[str, List[str]]] = None, |
|
negative_prompt_3: Optional[Union[str, List[str]]] = None, |
|
num_images_per_prompt: Optional[int] = 1, |
|
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, |
|
latents: Optional[torch.FloatTensor] = None, |
|
prompt_embeds: Optional[torch.FloatTensor] = None, |
|
negative_prompt_embeds: Optional[torch.FloatTensor] = None, |
|
pooled_prompt_embeds: Optional[torch.FloatTensor] = None, |
|
negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None, |
|
output_type: Optional[str] = "pil", |
|
return_dict: bool = True, |
|
joint_attention_kwargs: Optional[Dict[str, Any]] = None, |
|
clip_skip: Optional[int] = None, |
|
callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None, |
|
callback_on_step_end_tensor_inputs: List[str] = ["latents"], |
|
max_sequence_length: int = 256, |
|
|
|
|
|
clip_image=None, |
|
ipadapter_scale=1.0, |
|
): |
|
r""" |
|
Function invoked when calling the pipeline for generation. |
|
|
|
Args: |
|
prompt (`str` or `List[str]`, *optional*): |
|
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`. |
|
instead. |
|
prompt_2 (`str` or `List[str]`, *optional*): |
|
The prompt or prompts to be sent to `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is |
|
will be used instead |
|
prompt_3 (`str` or `List[str]`, *optional*): |
|
The prompt or prompts to be sent to `tokenizer_3` and `text_encoder_3`. If not defined, `prompt` is |
|
will be used instead |
|
height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor): |
|
The height in pixels of the generated image. This is set to 1024 by default for the best results. |
|
width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor): |
|
The width in pixels of the generated image. This is set to 1024 by default for the best results. |
|
num_inference_steps (`int`, *optional*, defaults to 50): |
|
The number of denoising steps. More denoising steps usually lead to a higher quality image at the |
|
expense of slower inference. |
|
timesteps (`List[int]`, *optional*): |
|
Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument |
|
in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is |
|
passed will be used. Must be in descending order. |
|
guidance_scale (`float`, *optional*, defaults to 7.0): |
|
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). |
|
`guidance_scale` is defined as `w` of equation 2. of [Imagen |
|
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > |
|
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, |
|
usually at the expense of lower image quality. |
|
negative_prompt (`str` or `List[str]`, *optional*): |
|
The prompt or prompts not to guide the image generation. If not defined, one has to pass |
|
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is |
|
less than `1`). |
|
negative_prompt_2 (`str` or `List[str]`, *optional*): |
|
The prompt or prompts not to guide the image generation to be sent to `tokenizer_2` and |
|
`text_encoder_2`. If not defined, `negative_prompt` is used instead |
|
negative_prompt_3 (`str` or `List[str]`, *optional*): |
|
The prompt or prompts not to guide the image generation to be sent to `tokenizer_3` and |
|
`text_encoder_3`. If not defined, `negative_prompt` is used instead |
|
num_images_per_prompt (`int`, *optional*, defaults to 1): |
|
The number of images to generate per prompt. |
|
generator (`torch.Generator` or `List[torch.Generator]`, *optional*): |
|
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html) |
|
to make generation deterministic. |
|
latents (`torch.FloatTensor`, *optional*): |
|
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image |
|
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents |
|
tensor will ge generated by sampling using the supplied random `generator`. |
|
prompt_embeds (`torch.FloatTensor`, *optional*): |
|
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not |
|
provided, text embeddings will be generated from `prompt` input argument. |
|
negative_prompt_embeds (`torch.FloatTensor`, *optional*): |
|
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt |
|
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input |
|
argument. |
|
pooled_prompt_embeds (`torch.FloatTensor`, *optional*): |
|
Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. |
|
If not provided, pooled text embeddings will be generated from `prompt` input argument. |
|
negative_pooled_prompt_embeds (`torch.FloatTensor`, *optional*): |
|
Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt |
|
weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt` |
|
input argument. |
|
output_type (`str`, *optional*, defaults to `"pil"`): |
|
The output format of the generate image. Choose between |
|
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`. |
|
return_dict (`bool`, *optional*, defaults to `True`): |
|
Whether or not to return a [`~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput`] instead |
|
of a plain tuple. |
|
joint_attention_kwargs (`dict`, *optional*): |
|
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under |
|
`self.processor` in |
|
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). |
|
callback_on_step_end (`Callable`, *optional*): |
|
A function that calls at the end of each denoising steps during the inference. The function is called |
|
with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int, |
|
callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by |
|
`callback_on_step_end_tensor_inputs`. |
|
callback_on_step_end_tensor_inputs (`List`, *optional*): |
|
The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list |
|
will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the |
|
`._callback_tensor_inputs` attribute of your pipeline class. |
|
max_sequence_length (`int` defaults to 256): Maximum sequence length to use with the `prompt`. |
|
|
|
Examples: |
|
|
|
Returns: |
|
[`~pipelines.stable_diffusion_3.StableDiffusion3PipelineOutput`] or `tuple`: |
|
[`~pipelines.stable_diffusion_3.StableDiffusion3PipelineOutput`] if `return_dict` is True, otherwise a |
|
`tuple`. When returning a tuple, the first element is a list with the generated images. |
|
""" |
|
|
|
height = height or self.default_sample_size * self.vae_scale_factor |
|
width = width or self.default_sample_size * self.vae_scale_factor |
|
|
|
|
|
self.check_inputs( |
|
prompt, |
|
prompt_2, |
|
prompt_3, |
|
height, |
|
width, |
|
negative_prompt=negative_prompt, |
|
negative_prompt_2=negative_prompt_2, |
|
negative_prompt_3=negative_prompt_3, |
|
prompt_embeds=prompt_embeds, |
|
negative_prompt_embeds=negative_prompt_embeds, |
|
pooled_prompt_embeds=pooled_prompt_embeds, |
|
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds, |
|
callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs, |
|
max_sequence_length=max_sequence_length, |
|
) |
|
|
|
self._guidance_scale = guidance_scale |
|
self._clip_skip = clip_skip |
|
self._joint_attention_kwargs = joint_attention_kwargs |
|
self._interrupt = False |
|
|
|
|
|
if prompt is not None and isinstance(prompt, str): |
|
batch_size = 1 |
|
elif prompt is not None and isinstance(prompt, list): |
|
batch_size = len(prompt) |
|
else: |
|
batch_size = prompt_embeds.shape[0] |
|
|
|
device = self._execution_device |
|
dtype = self.transformer.dtype |
|
|
|
lora_scale = ( |
|
self.joint_attention_kwargs.get("scale", None) if self.joint_attention_kwargs is not None else None |
|
) |
|
( |
|
prompt_embeds, |
|
negative_prompt_embeds, |
|
pooled_prompt_embeds, |
|
negative_pooled_prompt_embeds, |
|
) = self.encode_prompt( |
|
prompt=prompt, |
|
prompt_2=prompt_2, |
|
prompt_3=prompt_3, |
|
negative_prompt=negative_prompt, |
|
negative_prompt_2=negative_prompt_2, |
|
negative_prompt_3=negative_prompt_3, |
|
do_classifier_free_guidance=self.do_classifier_free_guidance, |
|
prompt_embeds=prompt_embeds, |
|
negative_prompt_embeds=negative_prompt_embeds, |
|
pooled_prompt_embeds=pooled_prompt_embeds, |
|
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds, |
|
device=device, |
|
clip_skip=self.clip_skip, |
|
num_images_per_prompt=num_images_per_prompt, |
|
max_sequence_length=max_sequence_length, |
|
lora_scale=lora_scale, |
|
) |
|
|
|
if self.do_classifier_free_guidance: |
|
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0) |
|
pooled_prompt_embeds = torch.cat([negative_pooled_prompt_embeds, pooled_prompt_embeds], dim=0) |
|
|
|
|
|
clip_image = clip_image.resize((max(clip_image.size), max(clip_image.size))) |
|
clip_image_embeds = self.encode_clip_image_emb(clip_image, device, dtype) |
|
|
|
|
|
timesteps, num_inference_steps = retrieve_timesteps(self.scheduler, num_inference_steps, device, timesteps) |
|
num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0) |
|
self._num_timesteps = len(timesteps) |
|
|
|
|
|
num_channels_latents = self.transformer.config.in_channels |
|
latents = self.prepare_latents( |
|
batch_size * num_images_per_prompt, |
|
num_channels_latents, |
|
height, |
|
width, |
|
prompt_embeds.dtype, |
|
device, |
|
generator, |
|
latents, |
|
) |
|
|
|
|
|
with self.progress_bar(total=num_inference_steps) as progress_bar: |
|
for i, t in enumerate(timesteps): |
|
if self.interrupt: |
|
continue |
|
|
|
|
|
latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents |
|
|
|
timestep = t.expand(latent_model_input.shape[0]) |
|
|
|
image_prompt_embeds, timestep_emb = self.image_proj_model( |
|
clip_image_embeds, |
|
timestep.to(dtype=latents.dtype), |
|
need_temb=True |
|
) |
|
|
|
joint_attention_kwargs = dict( |
|
emb_dict=dict( |
|
ip_hidden_states=image_prompt_embeds, |
|
temb=timestep_emb, |
|
scale=ipadapter_scale, |
|
) |
|
) |
|
|
|
noise_pred = self.transformer( |
|
hidden_states=latent_model_input, |
|
timestep=timestep, |
|
encoder_hidden_states=prompt_embeds, |
|
pooled_projections=pooled_prompt_embeds, |
|
joint_attention_kwargs=joint_attention_kwargs, |
|
return_dict=False, |
|
)[0] |
|
|
|
|
|
if self.do_classifier_free_guidance: |
|
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) |
|
noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond) |
|
|
|
|
|
latents_dtype = latents.dtype |
|
latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0] |
|
|
|
if latents.dtype != latents_dtype: |
|
if torch.backends.mps.is_available(): |
|
|
|
latents = latents.to(latents_dtype) |
|
|
|
if callback_on_step_end is not None: |
|
callback_kwargs = {} |
|
for k in callback_on_step_end_tensor_inputs: |
|
callback_kwargs[k] = locals()[k] |
|
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs) |
|
|
|
latents = callback_outputs.pop("latents", latents) |
|
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds) |
|
negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds) |
|
negative_pooled_prompt_embeds = callback_outputs.pop( |
|
"negative_pooled_prompt_embeds", negative_pooled_prompt_embeds |
|
) |
|
|
|
|
|
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): |
|
progress_bar.update() |
|
|
|
if XLA_AVAILABLE: |
|
xm.mark_step() |
|
|
|
if output_type == "latent": |
|
image = latents |
|
|
|
else: |
|
latents = (latents / self.vae.config.scaling_factor) + self.vae.config.shift_factor |
|
|
|
image = self.vae.decode(latents, return_dict=False)[0] |
|
image = self.image_processor.postprocess(image, output_type=output_type) |
|
|
|
|
|
self.maybe_free_model_hooks() |
|
|
|
if not return_dict: |
|
return (image,) |
|
|
|
return StableDiffusion3PipelineOutput(images=image) |
|
|