wanghaofan's picture
Upload 11 files
f2b7487 verified
raw
history blame
9.53 kB
# modified from https://github.com/mlfoundations/open_flamingo/blob/main/open_flamingo/src/helpers.py
import math
import torch
import torch.nn as nn
from diffusers.models.embeddings import Timesteps, TimestepEmbedding
def get_timestep_embedding(
timesteps: torch.Tensor,
embedding_dim: int,
flip_sin_to_cos: bool = False,
downscale_freq_shift: float = 1,
scale: float = 1,
max_period: int = 10000,
):
"""
This matches the implementation in Denoising Diffusion Probabilistic Models: Create sinusoidal timestep embeddings.
:param timesteps: a 1-D Tensor of N indices, one per batch element.
These may be fractional.
:param embedding_dim: the dimension of the output. :param max_period: controls the minimum frequency of the
embeddings. :return: an [N x dim] Tensor of positional embeddings.
"""
assert len(timesteps.shape) == 1, "Timesteps should be a 1d-array"
half_dim = embedding_dim // 2
exponent = -math.log(max_period) * torch.arange(
start=0, end=half_dim, dtype=torch.float32, device=timesteps.device
)
exponent = exponent / (half_dim - downscale_freq_shift)
emb = torch.exp(exponent)
emb = timesteps[:, None].float() * emb[None, :]
# scale embeddings
emb = scale * emb
# concat sine and cosine embeddings
emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=-1)
# flip sine and cosine embeddings
if flip_sin_to_cos:
emb = torch.cat([emb[:, half_dim:], emb[:, :half_dim]], dim=-1)
# zero pad
if embedding_dim % 2 == 1:
emb = torch.nn.functional.pad(emb, (0, 1, 0, 0))
return emb
# FFN
def FeedForward(dim, mult=4):
inner_dim = int(dim * mult)
return nn.Sequential(
nn.LayerNorm(dim),
nn.Linear(dim, inner_dim, bias=False),
nn.GELU(),
nn.Linear(inner_dim, dim, bias=False),
)
def reshape_tensor(x, heads):
bs, length, width = x.shape
#(bs, length, width) --> (bs, length, n_heads, dim_per_head)
x = x.view(bs, length, heads, -1)
# (bs, length, n_heads, dim_per_head) --> (bs, n_heads, length, dim_per_head)
x = x.transpose(1, 2)
# (bs, n_heads, length, dim_per_head) --> (bs*n_heads, length, dim_per_head)
x = x.reshape(bs, heads, length, -1)
return x
class PerceiverAttention(nn.Module):
def __init__(self, *, dim, dim_head=64, heads=8):
super().__init__()
self.scale = dim_head**-0.5
self.dim_head = dim_head
self.heads = heads
inner_dim = dim_head * heads
self.norm1 = nn.LayerNorm(dim)
self.norm2 = nn.LayerNorm(dim)
self.to_q = nn.Linear(dim, inner_dim, bias=False)
self.to_kv = nn.Linear(dim, inner_dim * 2, bias=False)
self.to_out = nn.Linear(inner_dim, dim, bias=False)
def forward(self, x, latents, shift=None, scale=None):
"""
Args:
x (torch.Tensor): image features
shape (b, n1, D)
latent (torch.Tensor): latent features
shape (b, n2, D)
"""
x = self.norm1(x)
latents = self.norm2(latents)
if shift is not None and scale is not None:
latents = latents * (1 + scale.unsqueeze(1)) + shift.unsqueeze(1)
b, l, _ = latents.shape
q = self.to_q(latents)
kv_input = torch.cat((x, latents), dim=-2)
k, v = self.to_kv(kv_input).chunk(2, dim=-1)
q = reshape_tensor(q, self.heads)
k = reshape_tensor(k, self.heads)
v = reshape_tensor(v, self.heads)
# attention
scale = 1 / math.sqrt(math.sqrt(self.dim_head))
weight = (q * scale) @ (k * scale).transpose(-2, -1) # More stable with f16 than dividing afterwards
weight = torch.softmax(weight.float(), dim=-1).type(weight.dtype)
out = weight @ v
out = out.permute(0, 2, 1, 3).reshape(b, l, -1)
return self.to_out(out)
class Resampler(nn.Module):
def __init__(
self,
dim=1024,
depth=8,
dim_head=64,
heads=16,
num_queries=8,
embedding_dim=768,
output_dim=1024,
ff_mult=4,
*args,
**kwargs,
):
super().__init__()
self.latents = nn.Parameter(torch.randn(1, num_queries, dim) / dim**0.5)
self.proj_in = nn.Linear(embedding_dim, dim)
self.proj_out = nn.Linear(dim, output_dim)
self.norm_out = nn.LayerNorm(output_dim)
self.layers = nn.ModuleList([])
for _ in range(depth):
self.layers.append(
nn.ModuleList(
[
PerceiverAttention(dim=dim, dim_head=dim_head, heads=heads),
FeedForward(dim=dim, mult=ff_mult),
]
)
)
def forward(self, x):
latents = self.latents.repeat(x.size(0), 1, 1)
x = self.proj_in(x)
for attn, ff in self.layers:
latents = attn(x, latents) + latents
latents = ff(latents) + latents
latents = self.proj_out(latents)
return self.norm_out(latents)
class TimeResampler(nn.Module):
def __init__(
self,
dim=1024,
depth=8,
dim_head=64,
heads=16,
num_queries=8,
embedding_dim=768,
output_dim=1024,
ff_mult=4,
timestep_in_dim=320,
timestep_flip_sin_to_cos=True,
timestep_freq_shift=0,
):
super().__init__()
self.latents = nn.Parameter(torch.randn(1, num_queries, dim) / dim**0.5)
self.proj_in = nn.Linear(embedding_dim, dim)
self.proj_out = nn.Linear(dim, output_dim)
self.norm_out = nn.LayerNorm(output_dim)
self.layers = nn.ModuleList([])
for _ in range(depth):
self.layers.append(
nn.ModuleList(
[
# msa
PerceiverAttention(dim=dim, dim_head=dim_head, heads=heads),
# ff
FeedForward(dim=dim, mult=ff_mult),
# adaLN
nn.Sequential(nn.SiLU(), nn.Linear(dim, 4 * dim, bias=True))
]
)
)
# time
self.time_proj = Timesteps(timestep_in_dim, timestep_flip_sin_to_cos, timestep_freq_shift)
self.time_embedding = TimestepEmbedding(timestep_in_dim, dim, act_fn="silu")
# adaLN
# self.adaLN_modulation = nn.Sequential(
# nn.SiLU(),
# nn.Linear(timestep_out_dim, 6 * timestep_out_dim, bias=True)
# )
def forward(self, x, timestep, need_temb=False):
timestep_emb = self.embedding_time(x, timestep) # bs, dim
latents = self.latents.repeat(x.size(0), 1, 1)
x = self.proj_in(x)
x = x + timestep_emb[:, None]
for attn, ff, adaLN_modulation in self.layers:
shift_msa, scale_msa, shift_mlp, scale_mlp = adaLN_modulation(timestep_emb).chunk(4, dim=1)
latents = attn(x, latents, shift_msa, scale_msa) + latents
res = latents
for idx_ff in range(len(ff)):
layer_ff = ff[idx_ff]
latents = layer_ff(latents)
if idx_ff == 0 and isinstance(layer_ff, nn.LayerNorm): # adaLN
latents = latents * (1 + scale_mlp.unsqueeze(1)) + shift_mlp.unsqueeze(1)
latents = latents + res
# latents = ff(latents) + latents
latents = self.proj_out(latents)
latents = self.norm_out(latents)
if need_temb:
return latents, timestep_emb
else:
return latents
def embedding_time(self, sample, timestep):
# 1. time
timesteps = timestep
if not torch.is_tensor(timesteps):
# TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can
# This would be a good case for the `match` statement (Python 3.10+)
is_mps = sample.device.type == "mps"
if isinstance(timestep, float):
dtype = torch.float32 if is_mps else torch.float64
else:
dtype = torch.int32 if is_mps else torch.int64
timesteps = torch.tensor([timesteps], dtype=dtype, device=sample.device)
elif len(timesteps.shape) == 0:
timesteps = timesteps[None].to(sample.device)
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
timesteps = timesteps.expand(sample.shape[0])
t_emb = self.time_proj(timesteps)
# timesteps does not contain any weights and will always return f32 tensors
# but time_embedding might actually be running in fp16. so we need to cast here.
# there might be better ways to encapsulate this.
t_emb = t_emb.to(dtype=sample.dtype)
emb = self.time_embedding(t_emb, None)
return emb
if __name__ == '__main__':
model = TimeResampler(
dim=1280,
depth=4,
dim_head=64,
heads=20,
num_queries=16,
embedding_dim=512,
output_dim=2048,
ff_mult=4,
timestep_in_dim=320,
timestep_flip_sin_to_cos=True,
timestep_freq_shift=0,
in_channel_extra_emb=2048,
)