# Copyright 2024 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Any, Dict, List, Optional, Tuple import torch import torch.nn.functional as F from torch import nn from diffusers.utils import deprecate, logging from diffusers.utils.torch_utils import maybe_allow_in_graph from diffusers.models.activations import GEGLU, GELU, ApproximateGELU, FP32SiLU, SwiGLU from diffusers.models.attention_processor import Attention, JointAttnProcessor2_0 from diffusers.models.embeddings import SinusoidalPositionalEmbedding from diffusers.models.normalization import AdaLayerNorm, AdaLayerNormContinuous, AdaLayerNormZero, RMSNorm, SD35AdaLayerNormZeroX logger = logging.get_logger(__name__) def _chunked_feed_forward(ff: nn.Module, hidden_states: torch.Tensor, chunk_dim: int, chunk_size: int): # "feed_forward_chunk_size" can be used to save memory if hidden_states.shape[chunk_dim] % chunk_size != 0: raise ValueError( f"`hidden_states` dimension to be chunked: {hidden_states.shape[chunk_dim]} has to be divisible by chunk size: {chunk_size}. Make sure to set an appropriate `chunk_size` when calling `unet.enable_forward_chunking`." ) num_chunks = hidden_states.shape[chunk_dim] // chunk_size ff_output = torch.cat( [ff(hid_slice) for hid_slice in hidden_states.chunk(num_chunks, dim=chunk_dim)], dim=chunk_dim, ) return ff_output @maybe_allow_in_graph class GatedSelfAttentionDense(nn.Module): r""" A gated self-attention dense layer that combines visual features and object features. Parameters: query_dim (`int`): The number of channels in the query. context_dim (`int`): The number of channels in the context. n_heads (`int`): The number of heads to use for attention. d_head (`int`): The number of channels in each head. """ def __init__(self, query_dim: int, context_dim: int, n_heads: int, d_head: int): super().__init__() # we need a linear projection since we need cat visual feature and obj feature self.linear = nn.Linear(context_dim, query_dim) self.attn = Attention(query_dim=query_dim, heads=n_heads, dim_head=d_head) self.ff = FeedForward(query_dim, activation_fn="geglu") self.norm1 = nn.LayerNorm(query_dim) self.norm2 = nn.LayerNorm(query_dim) self.register_parameter("alpha_attn", nn.Parameter(torch.tensor(0.0))) self.register_parameter("alpha_dense", nn.Parameter(torch.tensor(0.0))) self.enabled = True def forward(self, x: torch.Tensor, objs: torch.Tensor) -> torch.Tensor: if not self.enabled: return x n_visual = x.shape[1] objs = self.linear(objs) x = x + self.alpha_attn.tanh() * self.attn(self.norm1(torch.cat([x, objs], dim=1)))[:, :n_visual, :] x = x + self.alpha_dense.tanh() * self.ff(self.norm2(x)) return x @maybe_allow_in_graph class JointTransformerBlock(nn.Module): r""" A Transformer block following the MMDiT architecture, introduced in Stable Diffusion 3. Reference: https://arxiv.org/abs/2403.03206 Parameters: dim (`int`): The number of channels in the input and output. num_attention_heads (`int`): The number of heads to use for multi-head attention. attention_head_dim (`int`): The number of channels in each head. context_pre_only (`bool`): Boolean to determine if we should add some blocks associated with the processing of `context` conditions. """ def __init__( self, dim: int, num_attention_heads: int, attention_head_dim: int, context_pre_only: bool = False, qk_norm: Optional[str] = None, use_dual_attention: bool = False, ): super().__init__() self.use_dual_attention = use_dual_attention self.context_pre_only = context_pre_only context_norm_type = "ada_norm_continous" if context_pre_only else "ada_norm_zero" if use_dual_attention: self.norm1 = SD35AdaLayerNormZeroX(dim) else: self.norm1 = AdaLayerNormZero(dim) if context_norm_type == "ada_norm_continous": self.norm1_context = AdaLayerNormContinuous( dim, dim, elementwise_affine=False, eps=1e-6, bias=True, norm_type="layer_norm" ) elif context_norm_type == "ada_norm_zero": self.norm1_context = AdaLayerNormZero(dim) else: raise ValueError( f"Unknown context_norm_type: {context_norm_type}, currently only support `ada_norm_continous`, `ada_norm_zero`" ) if hasattr(F, "scaled_dot_product_attention"): processor = JointAttnProcessor2_0() else: raise ValueError( "The current PyTorch version does not support the `scaled_dot_product_attention` function." ) self.attn = Attention( query_dim=dim, cross_attention_dim=None, added_kv_proj_dim=dim, dim_head=attention_head_dim, heads=num_attention_heads, out_dim=dim, context_pre_only=context_pre_only, bias=True, processor=processor, qk_norm=qk_norm, eps=1e-6, ) if use_dual_attention: self.attn2 = Attention( query_dim=dim, cross_attention_dim=None, dim_head=attention_head_dim, heads=num_attention_heads, out_dim=dim, bias=True, processor=processor, qk_norm=qk_norm, eps=1e-6, ) else: self.attn2 = None self.norm2 = nn.LayerNorm(dim, elementwise_affine=False, eps=1e-6) self.ff = FeedForward(dim=dim, dim_out=dim, activation_fn="gelu-approximate") if not context_pre_only: self.norm2_context = nn.LayerNorm(dim, elementwise_affine=False, eps=1e-6) self.ff_context = FeedForward(dim=dim, dim_out=dim, activation_fn="gelu-approximate") else: self.norm2_context = None self.ff_context = None # let chunk size default to None self._chunk_size = None self._chunk_dim = 0 # Copied from diffusers.models.attention.BasicTransformerBlock.set_chunk_feed_forward def set_chunk_feed_forward(self, chunk_size: Optional[int], dim: int = 0): # Sets chunk feed-forward self._chunk_size = chunk_size self._chunk_dim = dim def forward( self, hidden_states: torch.FloatTensor, encoder_hidden_states: torch.FloatTensor, temb: torch.FloatTensor, joint_attention_kwargs=None, ): if self.use_dual_attention: norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp, norm_hidden_states2, gate_msa2 = self.norm1( hidden_states, emb=temb ) else: norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1(hidden_states, emb=temb) if self.context_pre_only: norm_encoder_hidden_states = self.norm1_context(encoder_hidden_states, temb) else: norm_encoder_hidden_states, c_gate_msa, c_shift_mlp, c_scale_mlp, c_gate_mlp = self.norm1_context( encoder_hidden_states, emb=temb ) # Attention. attn_output, context_attn_output = self.attn( hidden_states=norm_hidden_states, encoder_hidden_states=norm_encoder_hidden_states, **({} if joint_attention_kwargs is None else joint_attention_kwargs), ) # Process attention outputs for the `hidden_states`. attn_output = gate_msa.unsqueeze(1) * attn_output hidden_states = hidden_states + attn_output if self.use_dual_attention: attn_output2 = self.attn2(hidden_states=norm_hidden_states2, **({} if joint_attention_kwargs is None else joint_attention_kwargs),) attn_output2 = gate_msa2.unsqueeze(1) * attn_output2 hidden_states = hidden_states + attn_output2 norm_hidden_states = self.norm2(hidden_states) norm_hidden_states = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None] if self._chunk_size is not None: # "feed_forward_chunk_size" can be used to save memory ff_output = _chunked_feed_forward(self.ff, norm_hidden_states, self._chunk_dim, self._chunk_size) else: ff_output = self.ff(norm_hidden_states) ff_output = gate_mlp.unsqueeze(1) * ff_output hidden_states = hidden_states + ff_output # Process attention outputs for the `encoder_hidden_states`. if self.context_pre_only: encoder_hidden_states = None else: context_attn_output = c_gate_msa.unsqueeze(1) * context_attn_output encoder_hidden_states = encoder_hidden_states + context_attn_output norm_encoder_hidden_states = self.norm2_context(encoder_hidden_states) norm_encoder_hidden_states = norm_encoder_hidden_states * (1 + c_scale_mlp[:, None]) + c_shift_mlp[:, None] if self._chunk_size is not None: # "feed_forward_chunk_size" can be used to save memory context_ff_output = _chunked_feed_forward( self.ff_context, norm_encoder_hidden_states, self._chunk_dim, self._chunk_size ) else: context_ff_output = self.ff_context(norm_encoder_hidden_states) encoder_hidden_states = encoder_hidden_states + c_gate_mlp.unsqueeze(1) * context_ff_output return encoder_hidden_states, hidden_states @maybe_allow_in_graph class BasicTransformerBlock(nn.Module): r""" A basic Transformer block. Parameters: dim (`int`): The number of channels in the input and output. num_attention_heads (`int`): The number of heads to use for multi-head attention. attention_head_dim (`int`): The number of channels in each head. dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use. cross_attention_dim (`int`, *optional*): The size of the encoder_hidden_states vector for cross attention. activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward. num_embeds_ada_norm (: obj: `int`, *optional*): The number of diffusion steps used during training. See `Transformer2DModel`. attention_bias (: obj: `bool`, *optional*, defaults to `False`): Configure if the attentions should contain a bias parameter. only_cross_attention (`bool`, *optional*): Whether to use only cross-attention layers. In this case two cross attention layers are used. double_self_attention (`bool`, *optional*): Whether to use two self-attention layers. In this case no cross attention layers are used. upcast_attention (`bool`, *optional*): Whether to upcast the attention computation to float32. This is useful for mixed precision training. norm_elementwise_affine (`bool`, *optional*, defaults to `True`): Whether to use learnable elementwise affine parameters for normalization. norm_type (`str`, *optional*, defaults to `"layer_norm"`): The normalization layer to use. Can be `"layer_norm"`, `"ada_norm"` or `"ada_norm_zero"`. final_dropout (`bool` *optional*, defaults to False): Whether to apply a final dropout after the last feed-forward layer. attention_type (`str`, *optional*, defaults to `"default"`): The type of attention to use. Can be `"default"` or `"gated"` or `"gated-text-image"`. positional_embeddings (`str`, *optional*, defaults to `None`): The type of positional embeddings to apply to. num_positional_embeddings (`int`, *optional*, defaults to `None`): The maximum number of positional embeddings to apply. """ def __init__( self, dim: int, num_attention_heads: int, attention_head_dim: int, dropout=0.0, cross_attention_dim: Optional[int] = None, activation_fn: str = "geglu", num_embeds_ada_norm: Optional[int] = None, attention_bias: bool = False, only_cross_attention: bool = False, double_self_attention: bool = False, upcast_attention: bool = False, norm_elementwise_affine: bool = True, norm_type: str = "layer_norm", # 'layer_norm', 'ada_norm', 'ada_norm_zero', 'ada_norm_single', 'ada_norm_continuous', 'layer_norm_i2vgen' norm_eps: float = 1e-5, final_dropout: bool = False, attention_type: str = "default", positional_embeddings: Optional[str] = None, num_positional_embeddings: Optional[int] = None, ada_norm_continous_conditioning_embedding_dim: Optional[int] = None, ada_norm_bias: Optional[int] = None, ff_inner_dim: Optional[int] = None, ff_bias: bool = True, attention_out_bias: bool = True, ): super().__init__() self.dim = dim self.num_attention_heads = num_attention_heads self.attention_head_dim = attention_head_dim self.dropout = dropout self.cross_attention_dim = cross_attention_dim self.activation_fn = activation_fn self.attention_bias = attention_bias self.double_self_attention = double_self_attention self.norm_elementwise_affine = norm_elementwise_affine self.positional_embeddings = positional_embeddings self.num_positional_embeddings = num_positional_embeddings self.only_cross_attention = only_cross_attention # We keep these boolean flags for backward-compatibility. self.use_ada_layer_norm_zero = (num_embeds_ada_norm is not None) and norm_type == "ada_norm_zero" self.use_ada_layer_norm = (num_embeds_ada_norm is not None) and norm_type == "ada_norm" self.use_ada_layer_norm_single = norm_type == "ada_norm_single" self.use_layer_norm = norm_type == "layer_norm" self.use_ada_layer_norm_continuous = norm_type == "ada_norm_continuous" if norm_type in ("ada_norm", "ada_norm_zero") and num_embeds_ada_norm is None: raise ValueError( f"`norm_type` is set to {norm_type}, but `num_embeds_ada_norm` is not defined. Please make sure to" f" define `num_embeds_ada_norm` if setting `norm_type` to {norm_type}." ) self.norm_type = norm_type self.num_embeds_ada_norm = num_embeds_ada_norm if positional_embeddings and (num_positional_embeddings is None): raise ValueError( "If `positional_embedding` type is defined, `num_positition_embeddings` must also be defined." ) if positional_embeddings == "sinusoidal": self.pos_embed = SinusoidalPositionalEmbedding(dim, max_seq_length=num_positional_embeddings) else: self.pos_embed = None # Define 3 blocks. Each block has its own normalization layer. # 1. Self-Attn if norm_type == "ada_norm": self.norm1 = AdaLayerNorm(dim, num_embeds_ada_norm) elif norm_type == "ada_norm_zero": self.norm1 = AdaLayerNormZero(dim, num_embeds_ada_norm) elif norm_type == "ada_norm_continuous": self.norm1 = AdaLayerNormContinuous( dim, ada_norm_continous_conditioning_embedding_dim, norm_elementwise_affine, norm_eps, ada_norm_bias, "rms_norm", ) else: self.norm1 = nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine, eps=norm_eps) self.attn1 = Attention( query_dim=dim, heads=num_attention_heads, dim_head=attention_head_dim, dropout=dropout, bias=attention_bias, cross_attention_dim=cross_attention_dim if only_cross_attention else None, upcast_attention=upcast_attention, out_bias=attention_out_bias, ) # 2. Cross-Attn if cross_attention_dim is not None or double_self_attention: # We currently only use AdaLayerNormZero for self attention where there will only be one attention block. # I.e. the number of returned modulation chunks from AdaLayerZero would not make sense if returned during # the second cross attention block. if norm_type == "ada_norm": self.norm2 = AdaLayerNorm(dim, num_embeds_ada_norm) elif norm_type == "ada_norm_continuous": self.norm2 = AdaLayerNormContinuous( dim, ada_norm_continous_conditioning_embedding_dim, norm_elementwise_affine, norm_eps, ada_norm_bias, "rms_norm", ) else: self.norm2 = nn.LayerNorm(dim, norm_eps, norm_elementwise_affine) self.attn2 = Attention( query_dim=dim, cross_attention_dim=cross_attention_dim if not double_self_attention else None, heads=num_attention_heads, dim_head=attention_head_dim, dropout=dropout, bias=attention_bias, upcast_attention=upcast_attention, out_bias=attention_out_bias, ) # is self-attn if encoder_hidden_states is none else: if norm_type == "ada_norm_single": # For Latte self.norm2 = nn.LayerNorm(dim, norm_eps, norm_elementwise_affine) else: self.norm2 = None self.attn2 = None # 3. Feed-forward if norm_type == "ada_norm_continuous": self.norm3 = AdaLayerNormContinuous( dim, ada_norm_continous_conditioning_embedding_dim, norm_elementwise_affine, norm_eps, ada_norm_bias, "layer_norm", ) elif norm_type in ["ada_norm_zero", "ada_norm", "layer_norm"]: self.norm3 = nn.LayerNorm(dim, norm_eps, norm_elementwise_affine) elif norm_type == "layer_norm_i2vgen": self.norm3 = None self.ff = FeedForward( dim, dropout=dropout, activation_fn=activation_fn, final_dropout=final_dropout, inner_dim=ff_inner_dim, bias=ff_bias, ) # 4. Fuser if attention_type == "gated" or attention_type == "gated-text-image": self.fuser = GatedSelfAttentionDense(dim, cross_attention_dim, num_attention_heads, attention_head_dim) # 5. Scale-shift for PixArt-Alpha. if norm_type == "ada_norm_single": self.scale_shift_table = nn.Parameter(torch.randn(6, dim) / dim**0.5) # let chunk size default to None self._chunk_size = None self._chunk_dim = 0 def set_chunk_feed_forward(self, chunk_size: Optional[int], dim: int = 0): # Sets chunk feed-forward self._chunk_size = chunk_size self._chunk_dim = dim def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, encoder_hidden_states: Optional[torch.Tensor] = None, encoder_attention_mask: Optional[torch.Tensor] = None, timestep: Optional[torch.LongTensor] = None, cross_attention_kwargs: Dict[str, Any] = None, class_labels: Optional[torch.LongTensor] = None, added_cond_kwargs: Optional[Dict[str, torch.Tensor]] = None, ) -> torch.Tensor: if cross_attention_kwargs is not None: if cross_attention_kwargs.get("scale", None) is not None: logger.warning("Passing `scale` to `cross_attention_kwargs` is deprecated. `scale` will be ignored.") # Notice that normalization is always applied before the real computation in the following blocks. # 0. Self-Attention batch_size = hidden_states.shape[0] if self.norm_type == "ada_norm": norm_hidden_states = self.norm1(hidden_states, timestep) elif self.norm_type == "ada_norm_zero": norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1( hidden_states, timestep, class_labels, hidden_dtype=hidden_states.dtype ) elif self.norm_type in ["layer_norm", "layer_norm_i2vgen"]: norm_hidden_states = self.norm1(hidden_states) elif self.norm_type == "ada_norm_continuous": norm_hidden_states = self.norm1(hidden_states, added_cond_kwargs["pooled_text_emb"]) elif self.norm_type == "ada_norm_single": shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = ( self.scale_shift_table[None] + timestep.reshape(batch_size, 6, -1) ).chunk(6, dim=1) norm_hidden_states = self.norm1(hidden_states) norm_hidden_states = norm_hidden_states * (1 + scale_msa) + shift_msa else: raise ValueError("Incorrect norm used") if self.pos_embed is not None: norm_hidden_states = self.pos_embed(norm_hidden_states) # 1. Prepare GLIGEN inputs cross_attention_kwargs = cross_attention_kwargs.copy() if cross_attention_kwargs is not None else {} gligen_kwargs = cross_attention_kwargs.pop("gligen", None) attn_output = self.attn1( norm_hidden_states, encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None, attention_mask=attention_mask, **cross_attention_kwargs, ) if self.norm_type == "ada_norm_zero": attn_output = gate_msa.unsqueeze(1) * attn_output elif self.norm_type == "ada_norm_single": attn_output = gate_msa * attn_output hidden_states = attn_output + hidden_states if hidden_states.ndim == 4: hidden_states = hidden_states.squeeze(1) # 1.2 GLIGEN Control if gligen_kwargs is not None: hidden_states = self.fuser(hidden_states, gligen_kwargs["objs"]) # 3. Cross-Attention if self.attn2 is not None: if self.norm_type == "ada_norm": norm_hidden_states = self.norm2(hidden_states, timestep) elif self.norm_type in ["ada_norm_zero", "layer_norm", "layer_norm_i2vgen"]: norm_hidden_states = self.norm2(hidden_states) elif self.norm_type == "ada_norm_single": # For PixArt norm2 isn't applied here: # https://github.com/PixArt-alpha/PixArt-alpha/blob/0f55e922376d8b797edd44d25d0e7464b260dcab/diffusion/model/nets/PixArtMS.py#L70C1-L76C103 norm_hidden_states = hidden_states elif self.norm_type == "ada_norm_continuous": norm_hidden_states = self.norm2(hidden_states, added_cond_kwargs["pooled_text_emb"]) else: raise ValueError("Incorrect norm") if self.pos_embed is not None and self.norm_type != "ada_norm_single": norm_hidden_states = self.pos_embed(norm_hidden_states) attn_output = self.attn2( norm_hidden_states, encoder_hidden_states=encoder_hidden_states, attention_mask=encoder_attention_mask, **cross_attention_kwargs, ) hidden_states = attn_output + hidden_states # 4. Feed-forward # i2vgen doesn't have this norm 🤷‍♂️ if self.norm_type == "ada_norm_continuous": norm_hidden_states = self.norm3(hidden_states, added_cond_kwargs["pooled_text_emb"]) elif not self.norm_type == "ada_norm_single": norm_hidden_states = self.norm3(hidden_states) if self.norm_type == "ada_norm_zero": norm_hidden_states = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None] if self.norm_type == "ada_norm_single": norm_hidden_states = self.norm2(hidden_states) norm_hidden_states = norm_hidden_states * (1 + scale_mlp) + shift_mlp if self._chunk_size is not None: # "feed_forward_chunk_size" can be used to save memory ff_output = _chunked_feed_forward(self.ff, norm_hidden_states, self._chunk_dim, self._chunk_size) else: ff_output = self.ff(norm_hidden_states) if self.norm_type == "ada_norm_zero": ff_output = gate_mlp.unsqueeze(1) * ff_output elif self.norm_type == "ada_norm_single": ff_output = gate_mlp * ff_output hidden_states = ff_output + hidden_states if hidden_states.ndim == 4: hidden_states = hidden_states.squeeze(1) return hidden_states class LuminaFeedForward(nn.Module): r""" A feed-forward layer. Parameters: hidden_size (`int`): The dimensionality of the hidden layers in the model. This parameter determines the width of the model's hidden representations. intermediate_size (`int`): The intermediate dimension of the feedforward layer. multiple_of (`int`, *optional*): Value to ensure hidden dimension is a multiple of this value. ffn_dim_multiplier (float, *optional*): Custom multiplier for hidden dimension. Defaults to None. """ def __init__( self, dim: int, inner_dim: int, multiple_of: Optional[int] = 256, ffn_dim_multiplier: Optional[float] = None, ): super().__init__() inner_dim = int(2 * inner_dim / 3) # custom hidden_size factor multiplier if ffn_dim_multiplier is not None: inner_dim = int(ffn_dim_multiplier * inner_dim) inner_dim = multiple_of * ((inner_dim + multiple_of - 1) // multiple_of) self.linear_1 = nn.Linear( dim, inner_dim, bias=False, ) self.linear_2 = nn.Linear( inner_dim, dim, bias=False, ) self.linear_3 = nn.Linear( dim, inner_dim, bias=False, ) self.silu = FP32SiLU() def forward(self, x): return self.linear_2(self.silu(self.linear_1(x)) * self.linear_3(x)) @maybe_allow_in_graph class TemporalBasicTransformerBlock(nn.Module): r""" A basic Transformer block for video like data. Parameters: dim (`int`): The number of channels in the input and output. time_mix_inner_dim (`int`): The number of channels for temporal attention. num_attention_heads (`int`): The number of heads to use for multi-head attention. attention_head_dim (`int`): The number of channels in each head. cross_attention_dim (`int`, *optional*): The size of the encoder_hidden_states vector for cross attention. """ def __init__( self, dim: int, time_mix_inner_dim: int, num_attention_heads: int, attention_head_dim: int, cross_attention_dim: Optional[int] = None, ): super().__init__() self.is_res = dim == time_mix_inner_dim self.norm_in = nn.LayerNorm(dim) # Define 3 blocks. Each block has its own normalization layer. # 1. Self-Attn self.ff_in = FeedForward( dim, dim_out=time_mix_inner_dim, activation_fn="geglu", ) self.norm1 = nn.LayerNorm(time_mix_inner_dim) self.attn1 = Attention( query_dim=time_mix_inner_dim, heads=num_attention_heads, dim_head=attention_head_dim, cross_attention_dim=None, ) # 2. Cross-Attn if cross_attention_dim is not None: # We currently only use AdaLayerNormZero for self attention where there will only be one attention block. # I.e. the number of returned modulation chunks from AdaLayerZero would not make sense if returned during # the second cross attention block. self.norm2 = nn.LayerNorm(time_mix_inner_dim) self.attn2 = Attention( query_dim=time_mix_inner_dim, cross_attention_dim=cross_attention_dim, heads=num_attention_heads, dim_head=attention_head_dim, ) # is self-attn if encoder_hidden_states is none else: self.norm2 = None self.attn2 = None # 3. Feed-forward self.norm3 = nn.LayerNorm(time_mix_inner_dim) self.ff = FeedForward(time_mix_inner_dim, activation_fn="geglu") # let chunk size default to None self._chunk_size = None self._chunk_dim = None def set_chunk_feed_forward(self, chunk_size: Optional[int], **kwargs): # Sets chunk feed-forward self._chunk_size = chunk_size # chunk dim should be hardcoded to 1 to have better speed vs. memory trade-off self._chunk_dim = 1 def forward( self, hidden_states: torch.Tensor, num_frames: int, encoder_hidden_states: Optional[torch.Tensor] = None, ) -> torch.Tensor: # Notice that normalization is always applied before the real computation in the following blocks. # 0. Self-Attention batch_size = hidden_states.shape[0] batch_frames, seq_length, channels = hidden_states.shape batch_size = batch_frames // num_frames hidden_states = hidden_states[None, :].reshape(batch_size, num_frames, seq_length, channels) hidden_states = hidden_states.permute(0, 2, 1, 3) hidden_states = hidden_states.reshape(batch_size * seq_length, num_frames, channels) residual = hidden_states hidden_states = self.norm_in(hidden_states) if self._chunk_size is not None: hidden_states = _chunked_feed_forward(self.ff_in, hidden_states, self._chunk_dim, self._chunk_size) else: hidden_states = self.ff_in(hidden_states) if self.is_res: hidden_states = hidden_states + residual norm_hidden_states = self.norm1(hidden_states) attn_output = self.attn1(norm_hidden_states, encoder_hidden_states=None) hidden_states = attn_output + hidden_states # 3. Cross-Attention if self.attn2 is not None: norm_hidden_states = self.norm2(hidden_states) attn_output = self.attn2(norm_hidden_states, encoder_hidden_states=encoder_hidden_states) hidden_states = attn_output + hidden_states # 4. Feed-forward norm_hidden_states = self.norm3(hidden_states) if self._chunk_size is not None: ff_output = _chunked_feed_forward(self.ff, norm_hidden_states, self._chunk_dim, self._chunk_size) else: ff_output = self.ff(norm_hidden_states) if self.is_res: hidden_states = ff_output + hidden_states else: hidden_states = ff_output hidden_states = hidden_states[None, :].reshape(batch_size, seq_length, num_frames, channels) hidden_states = hidden_states.permute(0, 2, 1, 3) hidden_states = hidden_states.reshape(batch_size * num_frames, seq_length, channels) return hidden_states class SkipFFTransformerBlock(nn.Module): def __init__( self, dim: int, num_attention_heads: int, attention_head_dim: int, kv_input_dim: int, kv_input_dim_proj_use_bias: bool, dropout=0.0, cross_attention_dim: Optional[int] = None, attention_bias: bool = False, attention_out_bias: bool = True, ): super().__init__() if kv_input_dim != dim: self.kv_mapper = nn.Linear(kv_input_dim, dim, kv_input_dim_proj_use_bias) else: self.kv_mapper = None self.norm1 = RMSNorm(dim, 1e-06) self.attn1 = Attention( query_dim=dim, heads=num_attention_heads, dim_head=attention_head_dim, dropout=dropout, bias=attention_bias, cross_attention_dim=cross_attention_dim, out_bias=attention_out_bias, ) self.norm2 = RMSNorm(dim, 1e-06) self.attn2 = Attention( query_dim=dim, cross_attention_dim=cross_attention_dim, heads=num_attention_heads, dim_head=attention_head_dim, dropout=dropout, bias=attention_bias, out_bias=attention_out_bias, ) def forward(self, hidden_states, encoder_hidden_states, cross_attention_kwargs): cross_attention_kwargs = cross_attention_kwargs.copy() if cross_attention_kwargs is not None else {} if self.kv_mapper is not None: encoder_hidden_states = self.kv_mapper(F.silu(encoder_hidden_states)) norm_hidden_states = self.norm1(hidden_states) attn_output = self.attn1( norm_hidden_states, encoder_hidden_states=encoder_hidden_states, **cross_attention_kwargs, ) hidden_states = attn_output + hidden_states norm_hidden_states = self.norm2(hidden_states) attn_output = self.attn2( norm_hidden_states, encoder_hidden_states=encoder_hidden_states, **cross_attention_kwargs, ) hidden_states = attn_output + hidden_states return hidden_states @maybe_allow_in_graph class FreeNoiseTransformerBlock(nn.Module): r""" A FreeNoise Transformer block. Parameters: dim (`int`): The number of channels in the input and output. num_attention_heads (`int`): The number of heads to use for multi-head attention. attention_head_dim (`int`): The number of channels in each head. dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use. cross_attention_dim (`int`, *optional*): The size of the encoder_hidden_states vector for cross attention. activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward. num_embeds_ada_norm (`int`, *optional*): The number of diffusion steps used during training. See `Transformer2DModel`. attention_bias (`bool`, defaults to `False`): Configure if the attentions should contain a bias parameter. only_cross_attention (`bool`, defaults to `False`): Whether to use only cross-attention layers. In this case two cross attention layers are used. double_self_attention (`bool`, defaults to `False`): Whether to use two self-attention layers. In this case no cross attention layers are used. upcast_attention (`bool`, defaults to `False`): Whether to upcast the attention computation to float32. This is useful for mixed precision training. norm_elementwise_affine (`bool`, defaults to `True`): Whether to use learnable elementwise affine parameters for normalization. norm_type (`str`, defaults to `"layer_norm"`): The normalization layer to use. Can be `"layer_norm"`, `"ada_norm"` or `"ada_norm_zero"`. final_dropout (`bool` defaults to `False`): Whether to apply a final dropout after the last feed-forward layer. attention_type (`str`, defaults to `"default"`): The type of attention to use. Can be `"default"` or `"gated"` or `"gated-text-image"`. positional_embeddings (`str`, *optional*): The type of positional embeddings to apply to. num_positional_embeddings (`int`, *optional*, defaults to `None`): The maximum number of positional embeddings to apply. ff_inner_dim (`int`, *optional*): Hidden dimension of feed-forward MLP. ff_bias (`bool`, defaults to `True`): Whether or not to use bias in feed-forward MLP. attention_out_bias (`bool`, defaults to `True`): Whether or not to use bias in attention output project layer. context_length (`int`, defaults to `16`): The maximum number of frames that the FreeNoise block processes at once. context_stride (`int`, defaults to `4`): The number of frames to be skipped before starting to process a new batch of `context_length` frames. weighting_scheme (`str`, defaults to `"pyramid"`): The weighting scheme to use for weighting averaging of processed latent frames. As described in the Equation 9. of the [FreeNoise](https://arxiv.org/abs/2310.15169) paper, "pyramid" is the default setting used. """ def __init__( self, dim: int, num_attention_heads: int, attention_head_dim: int, dropout: float = 0.0, cross_attention_dim: Optional[int] = None, activation_fn: str = "geglu", num_embeds_ada_norm: Optional[int] = None, attention_bias: bool = False, only_cross_attention: bool = False, double_self_attention: bool = False, upcast_attention: bool = False, norm_elementwise_affine: bool = True, norm_type: str = "layer_norm", norm_eps: float = 1e-5, final_dropout: bool = False, positional_embeddings: Optional[str] = None, num_positional_embeddings: Optional[int] = None, ff_inner_dim: Optional[int] = None, ff_bias: bool = True, attention_out_bias: bool = True, context_length: int = 16, context_stride: int = 4, weighting_scheme: str = "pyramid", ): super().__init__() self.dim = dim self.num_attention_heads = num_attention_heads self.attention_head_dim = attention_head_dim self.dropout = dropout self.cross_attention_dim = cross_attention_dim self.activation_fn = activation_fn self.attention_bias = attention_bias self.double_self_attention = double_self_attention self.norm_elementwise_affine = norm_elementwise_affine self.positional_embeddings = positional_embeddings self.num_positional_embeddings = num_positional_embeddings self.only_cross_attention = only_cross_attention self.set_free_noise_properties(context_length, context_stride, weighting_scheme) # We keep these boolean flags for backward-compatibility. self.use_ada_layer_norm_zero = (num_embeds_ada_norm is not None) and norm_type == "ada_norm_zero" self.use_ada_layer_norm = (num_embeds_ada_norm is not None) and norm_type == "ada_norm" self.use_ada_layer_norm_single = norm_type == "ada_norm_single" self.use_layer_norm = norm_type == "layer_norm" self.use_ada_layer_norm_continuous = norm_type == "ada_norm_continuous" if norm_type in ("ada_norm", "ada_norm_zero") and num_embeds_ada_norm is None: raise ValueError( f"`norm_type` is set to {norm_type}, but `num_embeds_ada_norm` is not defined. Please make sure to" f" define `num_embeds_ada_norm` if setting `norm_type` to {norm_type}." ) self.norm_type = norm_type self.num_embeds_ada_norm = num_embeds_ada_norm if positional_embeddings and (num_positional_embeddings is None): raise ValueError( "If `positional_embedding` type is defined, `num_positition_embeddings` must also be defined." ) if positional_embeddings == "sinusoidal": self.pos_embed = SinusoidalPositionalEmbedding(dim, max_seq_length=num_positional_embeddings) else: self.pos_embed = None # Define 3 blocks. Each block has its own normalization layer. # 1. Self-Attn self.norm1 = nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine, eps=norm_eps) self.attn1 = Attention( query_dim=dim, heads=num_attention_heads, dim_head=attention_head_dim, dropout=dropout, bias=attention_bias, cross_attention_dim=cross_attention_dim if only_cross_attention else None, upcast_attention=upcast_attention, out_bias=attention_out_bias, ) # 2. Cross-Attn if cross_attention_dim is not None or double_self_attention: self.norm2 = nn.LayerNorm(dim, norm_eps, norm_elementwise_affine) self.attn2 = Attention( query_dim=dim, cross_attention_dim=cross_attention_dim if not double_self_attention else None, heads=num_attention_heads, dim_head=attention_head_dim, dropout=dropout, bias=attention_bias, upcast_attention=upcast_attention, out_bias=attention_out_bias, ) # is self-attn if encoder_hidden_states is none # 3. Feed-forward self.ff = FeedForward( dim, dropout=dropout, activation_fn=activation_fn, final_dropout=final_dropout, inner_dim=ff_inner_dim, bias=ff_bias, ) self.norm3 = nn.LayerNorm(dim, norm_eps, norm_elementwise_affine) # let chunk size default to None self._chunk_size = None self._chunk_dim = 0 def _get_frame_indices(self, num_frames: int) -> List[Tuple[int, int]]: frame_indices = [] for i in range(0, num_frames - self.context_length + 1, self.context_stride): window_start = i window_end = min(num_frames, i + self.context_length) frame_indices.append((window_start, window_end)) return frame_indices def _get_frame_weights(self, num_frames: int, weighting_scheme: str = "pyramid") -> List[float]: if weighting_scheme == "flat": weights = [1.0] * num_frames elif weighting_scheme == "pyramid": if num_frames % 2 == 0: # num_frames = 4 => [1, 2, 2, 1] mid = num_frames // 2 weights = list(range(1, mid + 1)) weights = weights + weights[::-1] else: # num_frames = 5 => [1, 2, 3, 2, 1] mid = (num_frames + 1) // 2 weights = list(range(1, mid)) weights = weights + [mid] + weights[::-1] elif weighting_scheme == "delayed_reverse_sawtooth": if num_frames % 2 == 0: # num_frames = 4 => [0.01, 2, 2, 1] mid = num_frames // 2 weights = [0.01] * (mid - 1) + [mid] weights = weights + list(range(mid, 0, -1)) else: # num_frames = 5 => [0.01, 0.01, 3, 2, 1] mid = (num_frames + 1) // 2 weights = [0.01] * mid weights = weights + list(range(mid, 0, -1)) else: raise ValueError(f"Unsupported value for weighting_scheme={weighting_scheme}") return weights def set_free_noise_properties( self, context_length: int, context_stride: int, weighting_scheme: str = "pyramid" ) -> None: self.context_length = context_length self.context_stride = context_stride self.weighting_scheme = weighting_scheme def set_chunk_feed_forward(self, chunk_size: Optional[int], dim: int = 0) -> None: # Sets chunk feed-forward self._chunk_size = chunk_size self._chunk_dim = dim def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, encoder_hidden_states: Optional[torch.Tensor] = None, encoder_attention_mask: Optional[torch.Tensor] = None, cross_attention_kwargs: Dict[str, Any] = None, *args, **kwargs, ) -> torch.Tensor: if cross_attention_kwargs is not None: if cross_attention_kwargs.get("scale", None) is not None: logger.warning("Passing `scale` to `cross_attention_kwargs` is deprecated. `scale` will be ignored.") cross_attention_kwargs = cross_attention_kwargs.copy() if cross_attention_kwargs is not None else {} # hidden_states: [B x H x W, F, C] device = hidden_states.device dtype = hidden_states.dtype num_frames = hidden_states.size(1) frame_indices = self._get_frame_indices(num_frames) frame_weights = self._get_frame_weights(self.context_length, self.weighting_scheme) frame_weights = torch.tensor(frame_weights, device=device, dtype=dtype).unsqueeze(0).unsqueeze(-1) is_last_frame_batch_complete = frame_indices[-1][1] == num_frames # Handle out-of-bounds case if num_frames isn't perfectly divisible by context_length # For example, num_frames=25, context_length=16, context_stride=4, then we expect the ranges: # [(0, 16), (4, 20), (8, 24), (10, 26)] if not is_last_frame_batch_complete: if num_frames < self.context_length: raise ValueError(f"Expected {num_frames=} to be greater or equal than {self.context_length=}") last_frame_batch_length = num_frames - frame_indices[-1][1] frame_indices.append((num_frames - self.context_length, num_frames)) num_times_accumulated = torch.zeros((1, num_frames, 1), device=device) accumulated_values = torch.zeros_like(hidden_states) for i, (frame_start, frame_end) in enumerate(frame_indices): # The reason for slicing here is to ensure that if (frame_end - frame_start) is to handle # cases like frame_indices=[(0, 16), (16, 20)], if the user provided a video with 19 frames, or # essentially a non-multiple of `context_length`. weights = torch.ones_like(num_times_accumulated[:, frame_start:frame_end]) weights *= frame_weights hidden_states_chunk = hidden_states[:, frame_start:frame_end] # Notice that normalization is always applied before the real computation in the following blocks. # 1. Self-Attention norm_hidden_states = self.norm1(hidden_states_chunk) if self.pos_embed is not None: norm_hidden_states = self.pos_embed(norm_hidden_states) attn_output = self.attn1( norm_hidden_states, encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None, attention_mask=attention_mask, **cross_attention_kwargs, ) hidden_states_chunk = attn_output + hidden_states_chunk if hidden_states_chunk.ndim == 4: hidden_states_chunk = hidden_states_chunk.squeeze(1) # 2. Cross-Attention if self.attn2 is not None: norm_hidden_states = self.norm2(hidden_states_chunk) if self.pos_embed is not None and self.norm_type != "ada_norm_single": norm_hidden_states = self.pos_embed(norm_hidden_states) attn_output = self.attn2( norm_hidden_states, encoder_hidden_states=encoder_hidden_states, attention_mask=encoder_attention_mask, **cross_attention_kwargs, ) hidden_states_chunk = attn_output + hidden_states_chunk if i == len(frame_indices) - 1 and not is_last_frame_batch_complete: accumulated_values[:, -last_frame_batch_length:] += ( hidden_states_chunk[:, -last_frame_batch_length:] * weights[:, -last_frame_batch_length:] ) num_times_accumulated[:, -last_frame_batch_length:] += weights[:, -last_frame_batch_length] else: accumulated_values[:, frame_start:frame_end] += hidden_states_chunk * weights num_times_accumulated[:, frame_start:frame_end] += weights # TODO(aryan): Maybe this could be done in a better way. # # Previously, this was: # hidden_states = torch.where( # num_times_accumulated > 0, accumulated_values / num_times_accumulated, accumulated_values # ) # # The reasoning for the change here is `torch.where` became a bottleneck at some point when golfing memory # spikes. It is particularly noticeable when the number of frames is high. My understanding is that this comes # from tensors being copied - which is why we resort to spliting and concatenating here. I've not particularly # looked into this deeply because other memory optimizations led to more pronounced reductions. hidden_states = torch.cat( [ torch.where(num_times_split > 0, accumulated_split / num_times_split, accumulated_split) for accumulated_split, num_times_split in zip( accumulated_values.split(self.context_length, dim=1), num_times_accumulated.split(self.context_length, dim=1), ) ], dim=1, ).to(dtype) # 3. Feed-forward norm_hidden_states = self.norm3(hidden_states) if self._chunk_size is not None: ff_output = _chunked_feed_forward(self.ff, norm_hidden_states, self._chunk_dim, self._chunk_size) else: ff_output = self.ff(norm_hidden_states) hidden_states = ff_output + hidden_states if hidden_states.ndim == 4: hidden_states = hidden_states.squeeze(1) return hidden_states class FeedForward(nn.Module): r""" A feed-forward layer. Parameters: dim (`int`): The number of channels in the input. dim_out (`int`, *optional*): The number of channels in the output. If not given, defaults to `dim`. mult (`int`, *optional*, defaults to 4): The multiplier to use for the hidden dimension. dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use. activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward. final_dropout (`bool` *optional*, defaults to False): Apply a final dropout. bias (`bool`, defaults to True): Whether to use a bias in the linear layer. """ def __init__( self, dim: int, dim_out: Optional[int] = None, mult: int = 4, dropout: float = 0.0, activation_fn: str = "geglu", final_dropout: bool = False, inner_dim=None, bias: bool = True, ): super().__init__() if inner_dim is None: inner_dim = int(dim * mult) dim_out = dim_out if dim_out is not None else dim if activation_fn == "gelu": act_fn = GELU(dim, inner_dim, bias=bias) if activation_fn == "gelu-approximate": act_fn = GELU(dim, inner_dim, approximate="tanh", bias=bias) elif activation_fn == "geglu": act_fn = GEGLU(dim, inner_dim, bias=bias) elif activation_fn == "geglu-approximate": act_fn = ApproximateGELU(dim, inner_dim, bias=bias) elif activation_fn == "swiglu": act_fn = SwiGLU(dim, inner_dim, bias=bias) self.net = nn.ModuleList([]) # project in self.net.append(act_fn) # project dropout self.net.append(nn.Dropout(dropout)) # project out self.net.append(nn.Linear(inner_dim, dim_out, bias=bias)) # FF as used in Vision Transformer, MLP-Mixer, etc. have a final dropout if final_dropout: self.net.append(nn.Dropout(dropout)) def forward(self, hidden_states: torch.Tensor, *args, **kwargs) -> torch.Tensor: if len(args) > 0 or kwargs.get("scale", None) is not None: deprecation_message = "The `scale` argument is deprecated and will be ignored. Please remove it, as passing it will raise an error in the future. `scale` should directly be passed while calling the underlying pipeline component i.e., via `cross_attention_kwargs`." deprecate("scale", "1.0.0", deprecation_message) for module in self.net: hidden_states = module(hidden_states) return hidden_states