Update README.md
Browse files
README.md
CHANGED
@@ -4,4 +4,64 @@ datasets:
|
|
4 |
- natural_questions
|
5 |
language:
|
6 |
- en
|
7 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
- natural_questions
|
5 |
language:
|
6 |
- en
|
7 |
+
tags:
|
8 |
+
- colbert
|
9 |
+
---
|
10 |
+
# ColBERT NQ Checkpoint
|
11 |
+
|
12 |
+
This trained model is based on the [ColBERT](https://github.com/stanford-futuredata/ColBERT) model, trained on the [Natural Questions](https://huggingface.co/datasets/natural_questions) dataset.
|
13 |
+
|
14 |
+
# Model Details
|
15 |
+
|
16 |
+
Model is based on ColBERT, which in turn is based around a BERT encoder. The model is trained for text retrieval using a contrastive loss; given a query there's a relevant and non relevant passages.
|
17 |
+
|
18 |
+
The corpus is based on [Wikipeida](https://huggingface.co/datasets/wiki_dpr).
|
19 |
+
|
20 |
+
# Uses
|
21 |
+
|
22 |
+
Model can be used by the [ColBERT](https://github.com/stanford-futuredata/ColBERT) codebase to initiate a retriever; one needs to build a vector index and then queries can be ran.
|
23 |
+
|
24 |
+
# Evaluation
|
25 |
+
|
26 |
+
Evaluation results on NQ dev:
|
27 |
+
|
28 |
+
<table>
|
29 |
+
<colgroup>
|
30 |
+
<col class="org-right">
|
31 |
+
<col class="org-right">
|
32 |
+
<col class="org-right">
|
33 |
+
</colgroup>
|
34 |
+
<thead>
|
35 |
+
<tr>
|
36 |
+
<th scope="col" class="org-right">NQ</th>
|
37 |
+
<th scope="col" class="org-right">Recall</th>
|
38 |
+
<th scope="col" class="org-right">MRR</th>
|
39 |
+
</tr>
|
40 |
+
</thead>
|
41 |
+
|
42 |
+
<tbody>
|
43 |
+
<tr>
|
44 |
+
<td class="org-right">10</td>
|
45 |
+
<td class="org-right">71.1</td>
|
46 |
+
<td class="org-right">52.0</td>
|
47 |
+
</tr>
|
48 |
+
|
49 |
+
<tr>
|
50 |
+
<td class="org-right">20</td>
|
51 |
+
<td class="org-right">76.3</td>
|
52 |
+
<td class="org-right">52.3</td>
|
53 |
+
</tr>
|
54 |
+
|
55 |
+
<tr>
|
56 |
+
<td class="org-right">50</td>
|
57 |
+
<td class="org-right">80.4</td>
|
58 |
+
<td class="org-right">52.5</td>
|
59 |
+
</tr>
|
60 |
+
|
61 |
+
<tr>
|
62 |
+
<td class="org-right">100</td>
|
63 |
+
<td class="org-right">82.7</td>
|
64 |
+
<td class="org-right">52.5</td>
|
65 |
+
</tr>
|
66 |
+
</tbody>
|
67 |
+
</table>
|