xinhe commited on
Commit
377cd9d
1 Parent(s): 0764f41

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +57 -0
README.md CHANGED
@@ -1,3 +1,60 @@
1
  ---
 
 
2
  license: apache-2.0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ language:
3
+ - en
4
  license: apache-2.0
5
+ tags:
6
+ - generated_from_trainer
7
+ datasets:
8
+ - glue
9
+ metrics:
10
+ - accuracy
11
+ model_index:
12
+ - name: sst2
13
+ results:
14
+ - task:
15
+ name: Text Classification
16
+ type: text-classification
17
+ dataset:
18
+ name: GLUE SST2
19
+ type: glue
20
+ args: sst2
21
+ metric:
22
+ name: Accuracy
23
+ type: accuracy
24
+ value: 0.9254587155963303
25
  ---
26
+ # INT8 albert-base-v2-sst2
27
+
28
+ ### Post-training static quantization
29
+
30
+ This is an INT8 PyTorch model quantized with [Intel® Neural Compressor](https://github.com/intel/neural-compressor).
31
+
32
+ The original fp32 model comes from the fine-tuned model [Alireza1044/albert-base-v2-sst2](https://huggingface.co/Alireza1044/albert-base-v2-sst2).
33
+
34
+ The calibration dataloader is the train dataloader. The default calibration sampling size 300 isn't divisible exactly by batch size 8, so the real sampling size is 304.
35
+
36
+ The linear modules **albert.encoder.albert_layer_groups.0.albert_layers.0.ffn_output.module, albert.encoder.albert_layer_groups.0.albert_layers.0.ffn.module** fall back to fp32 to meet the 1% relative accuracy loss.
37
+
38
+ ### Test result
39
+
40
+ - Batch size = 8
41
+ - [Amazon Web Services](https://aws.amazon.com/) c6i.xlarge (Intel ICE Lake: 4 vCPUs, 8g Memory) instance.
42
+
43
+ | |INT8|FP32|
44
+ |---|:---:|:---:|
45
+ | **Throughput (samples/sec)** |13.464|11.854|
46
+ | **Accuracy (eval-accuracy)** |0.9255|0.9232|
47
+ | **Model size (MB)** |25|44.6|
48
+
49
+ ### Load with Intel® Neural Compressor (build from source):
50
+
51
+ ```python
52
+ from neural_compressor.utils.load_huggingface import OptimizedModel
53
+ int8_model = OptimizedModel.from_pretrained(
54
+ 'Intel/albert-base-v2-sst2-int8-static',
55
+ )
56
+ ```
57
+
58
+ Notes:
59
+ - The INT8 model has better performance than the FP32 model when the CPU is fully occupied. Otherwise, there will be the illusion that INT8 is inferior to FP32.
60
+