xinhe commited on
Commit
d8a6101
1 Parent(s): 7717b4c

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +40 -0
README.md CHANGED
@@ -1,3 +1,43 @@
1
  ---
 
2
  license: apache-2.0
 
 
 
 
 
 
 
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ language: en
3
  license: apache-2.0
4
+ tags:
5
+ - text-classfication
6
+ - int8
7
+ - PostTrainingDynamic
8
+ datasets:
9
+ - mrpc
10
+ metrics:
11
+ - f1
12
  ---
13
+
14
+ # INT8 BERT base uncased finetuned MRPC
15
+
16
+ ### Post-training dynamic quantization
17
+
18
+ This is an INT8 PyTorch model quantized with [Intel® Neural Compressor](https://github.com/intel/neural-compressor).
19
+
20
+ The original fp32 model comes from the fine-tuned model [Intel/bert-base-uncased-mrpc](https://huggingface.co/Intel/bert-base-uncased-mrpc).
21
+
22
+ ### Test result
23
+
24
+ - Batch size = 8
25
+ - [Amazon Web Services](https://aws.amazon.com/) c6i.xlarge (Intel ICE Lake: 4 vCPUs, 8g Memory) instance.
26
+
27
+ | |INT8|FP32|
28
+ |---|:---:|:---:|
29
+ | **Throughput (samples/sec)** |24.707|11.202|
30
+ | **Accuracy (eval-f1)** |0.8997|0.9042|
31
+ | **Model size (MB)** |174|418|
32
+
33
+ ### Load with Intel® Neural Compressor (build from source):
34
+
35
+ ```python
36
+ from neural_compressor.utils.load_huggingface import OptimizedModel
37
+ int8_model = OptimizedModel.from_pretrained(
38
+ 'Intel/bert-base-uncased-mrpc-int8-dynamic',
39
+ )
40
+ ```
41
+
42
+ Notes:
43
+ - The INT8 model has better performance than the FP32 model when the CPU is fully occupied. Otherwise, there will be the illusion that INT8 is inferior to FP32.