--- language: en license: apache-2.0 tags: - text-classfication - int8 - Intel® Neural Compressor - PostTrainingDynamic - onnx datasets: - mrpc metrics: - f1 --- # INT8 BERT base uncased finetuned MRPC ## Post-training dynamic quantization ### PyTorch This is an INT8 PyTorch model quantized with [huggingface/optimum-intel](https://github.com/huggingface/optimum-intel) through the usage of [Intel® Neural Compressor](https://github.com/intel/neural-compressor). The original fp32 model comes from the fine-tuned model [Intel/bert-base-uncased-mrpc](https://huggingface.co/Intel/bert-base-uncased-mrpc). #### Test result | |INT8|FP32| |---|:---:|:---:| | **Accuracy (eval-f1)** |0.8997|0.9042| | **Model size (MB)** |174|418| #### Load with optimum: ```python from optimum.intel.neural_compressor.quantization import IncQuantizedModelForSequenceClassification int8_model = IncQuantizedModelForSequenceClassification.from_pretrained( 'Intel/bert-base-uncased-mrpc-int8-dynamic', ) ``` ### ONNX This is an INT8 ONNX model quantized with [Intel® Neural Compressor](https://github.com/intel/neural-compressor). The original fp32 model comes from the fine-tuned model [Intel/bert-base-uncased-mrpc](https://huggingface.co/Intel/bert-base-uncased-mrpc). #### Test result | |INT8|FP32| |---|:---:|:---:| | **Accuracy (eval-f1)** |0.8958|0.9042| | **Model size (MB)** |107|418| #### Load ONNX model: ```python from optimum.onnxruntime import ORTModelForSequenceClassification model = ORTModelForSequenceClassification.from_pretrained('Intel/bert-base-uncased-mrpc-int8-dynamic') ```