English
yintongl commited on
Commit
f829afe
·
verified ·
1 Parent(s): c9afff2

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +103 -3
README.md CHANGED
@@ -1,3 +1,103 @@
1
- ---
2
- license: bigscience-bloom-rail-1.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: bigscience-bloom-rail-1.0
3
+ datasets:
4
+ - NeelNanda/pile-10k
5
+ language:
6
+ - en
7
+ ---
8
+
9
+
10
+ ## Model Details
11
+
12
+ This model is an int4 model with group_size 128 of [bigscience/bloom-7b1](https://huggingface.co/bigscience/bloom-7b1) generated by [intel/auto-round](https://github.com/intel/auto-round).
13
+
14
+
15
+
16
+ ### INT4 Inference with AutoGPTQ's Kernel
17
+
18
+ ```python
19
+ ##pip install auto-gptq[triton]
20
+ ##pip install triton==2.2.0
21
+ from transformers import AutoModelForCausalLM, AutoTokenizer
22
+ quantized_model_dir = "Intel/bloom-7b1-int4-inc"
23
+ model = AutoModelForCausalLM.from_pretrained(quantized_model_dir,
24
+ device_map="auto",
25
+ trust_remote_code=False,
26
+ )
27
+ tokenizer = AutoTokenizer.from_pretrained(quantized_model_dir, use_fast=True)
28
+ print(tokenizer.decode(model.generate(**tokenizer("There is a girl who likes adventure,", return_tensors="pt").to(model.device),max_new_tokens=50)[0]))
29
+ ```
30
+
31
+
32
+
33
+ ### Evaluate the model
34
+
35
+ Install [lm-eval-harness](https://github.com/EleutherAI/lm-evaluation-harness.git) from source, we used the git id 96d185fa6232a5ab685ba7c43e45d1dbb3bb906d
36
+
37
+ ```bash
38
+ lm_eval --model hf --model_args pretrained="Intel/bloom-7b1-int4-inc",autogptq=True,gptq_use_triton=True --device cuda:0 --tasks lambada_openai,hellaswag,piqa,winogrande,truthfulqa_mc1,openbookqa,boolq,arc_easy,arc_challenge,mmlu --batch_size 32
39
+ ```
40
+
41
+ | Metric | BF16 | INT4 |
42
+ | -------------- | ------ | ------ |
43
+ | Avg. | 0. | 0.4716 |
44
+ | mmlu | 0. | 0.2598 |
45
+ | lambada_openai | 0. | 0.5729 |
46
+ | hellaswag | 0. | 0.4619 |
47
+ | winogrande | 0. | 0.6369 |
48
+ | piqa | 0. | 0.7263 |
49
+ | truthfulqa_mc1 | 0. | 0.2350 |
50
+ | openbookqa | 0. | 0.2440 |
51
+ | boolq | 0. | 0.6294 |
52
+ | arc_easy | 0. | 0.6444 |
53
+ | arc_challenge | 0. | 0.3055 |
54
+
55
+
56
+
57
+
58
+
59
+ ### Reproduce the model
60
+
61
+ Here is the sample command to reproduce the model
62
+
63
+ ```bash
64
+ git clone https://github.com/intel/auto-round
65
+ cd auto-round/examples/language-modeling
66
+ pip install -r requirements.txt
67
+ python3 main.py \
68
+ --model_name bigscience/bloom-7b1 \
69
+ --device 0 \
70
+ --group_size 128 \
71
+ --bits 4 \
72
+ --iters 1000 \
73
+ --deployment_device 'gpu' \
74
+ --output_dir "./tmp_autoround" \
75
+
76
+ ```
77
+
78
+
79
+
80
+
81
+
82
+ ## Caveats and Recommendations
83
+
84
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model.
85
+
86
+ Here are a couple of useful links to learn more about Intel's AI software:
87
+
88
+ * Intel Neural Compressor [link](https://github.com/intel/neural-compressor)
89
+ * Intel Extension for Transformers [link](https://github.com/intel/intel-extension-for-transformers)
90
+
91
+
92
+
93
+ ## Disclaimer
94
+
95
+ The license on this model does not constitute legal advice. We are not responsible for the actions of third parties who use this model. Please consult an attorney before using this model for commercial purposes.
96
+
97
+
98
+
99
+ ## Cite
100
+
101
+ @article{cheng2023optimize, title={Optimize weight rounding via signed gradient descent for the quantization of llms}, author={Cheng, Wenhua and Zhang, Weiwei and Shen, Haihao and Cai, Yiyang and He, Xin and Lv, Kaokao}, journal={arXiv preprint arXiv:2309.05516}, year={2023} }
102
+
103
+ [arxiv](https://arxiv.org/abs/2309.05516) [github](https://github.com/intel/auto-round)