File size: 7,853 Bytes
0bf3738
 
 
 
 
 
 
 
 
 
 
 
fc1dad9
 
 
 
 
 
 
530c450
 
fc1dad9
 
 
 
 
 
0bf3738
fc1dad9
0bf3738
f780875
0bf3738
fc1dad9
 
 
0bf3738
 
fc1dad9
 
 
0bf3738
fc1dad9
 
 
 
 
 
 
 
 
0bf3738
fc1dad9
 
 
 
 
0bf3738
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4e7800c
0bf3738
 
 
fc1dad9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0bf3738
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
---
license: apache-2.0
tags:
- vision
- depth-estimation
widget:
- src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/tiger.jpg
  example_title: Tiger
- src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/teapot.jpg
  example_title: Teapot
- src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/palace.jpg
  example_title: Palace
model-index:
- name: dpt-hybrid-midas
  results:
  - task:
      type: monocular-depth-estimation
      name: Monocular Depth Estimation
    dataset:
      type: MIX-6
      name: MIX-6
    metrics:
    - type: Zero-shot transfer
      value: 11.06
      name: Zero-shot transfer
      config: Zero-shot transfer
      verified: false

---

## Model Details: DPT-Hybrid (also known as MiDaS 3.0)

Dense Prediction Transformer (DPT) model trained on 1.4 million images for monocular depth estimation. 
It was introduced in the paper [Vision Transformers for Dense Prediction](https://arxiv.org/abs/2103.13413) by Ranftl et al. (2021) and first released in [this repository](https://github.com/isl-org/DPT). 
DPT uses the Vision Transformer (ViT) as backbone and adds a neck + head on top for monocular depth estimation.
![model image](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/dpt_architecture.jpg)

This repository hosts the "hybrid" version of the model as stated in the paper. DPT-Hybrid diverges from DPT by using [ViT-hybrid](https://huggingface.co/google/vit-hybrid-base-bit-384) as a backbone and taking some activations from the backbone.

The model card has been written in combination by the Hugging Face team and Intel.

| Model Detail | Description |
| ----------- | ----------- | 
| Model Authors - Company | Intel | 
| Date | December 22, 2022 | 
| Version | 1 | 
| Type | Computer Vision - Monocular Depth Estimation | 
| Paper or Other Resources | [Vision Transformers for Dense Prediction](https://arxiv.org/abs/2103.13413) and [GitHub Repo](https://github.com/isl-org/DPT) | 
| License | Apache 2.0 |
| Questions or Comments | [Community Tab](https://huggingface.co/Intel/dpt-hybrid-midas/discussions) and [Intel Developers Discord](https://discord.gg/rv2Gp55UJQ)|

| Intended Use | Description |
| ----------- | ----------- | 
| Primary intended uses | You can use the raw model for zero-shot monocular depth estimation. See the [model hub](https://huggingface.co/models?search=dpt) to look for fine-tuned versions on a task that interests you. | 
| Primary intended users | Anyone doing monocular depth estimation | 
| Out-of-scope uses | This model in most cases will need to be fine-tuned for your particular task.  The model should not be used to intentionally create hostile or alienating environments for people.|

### How to use

Here is how to use this model for zero-shot depth estimation on an image:

```python
from PIL import Image
import numpy as np
import requests
import torch

from transformers import DPTForDepthEstimation, DPTFeatureExtractor

model = DPTForDepthEstimation.from_pretrained("Intel/dpt-hybrid-midas", low_cpu_mem_usage=True)
feature_extractor = DPTFeatureExtractor.from_pretrained("Intel/dpt-hybrid-midas")

url = "http://images.cocodataset.org/val2017/000000039769.jpg"
image = Image.open(requests.get(url, stream=True).raw)

# prepare image for the model
inputs = feature_extractor(images=image, return_tensors="pt")

with torch.no_grad():
    outputs = model(**inputs)
    predicted_depth = outputs.predicted_depth

# interpolate to original size
prediction = torch.nn.functional.interpolate(
    predicted_depth.unsqueeze(1),
    size=image.size[::-1],
    mode="bicubic",
    align_corners=False,
)

# visualize the prediction
output = prediction.squeeze().cpu().numpy()
formatted = (output * 255 / np.max(output)).astype("uint8")
depth = Image.fromarray(formatted)
depth.show()
```

For more code examples, we refer to the [documentation](https://huggingface.co/docs/transformers/master/en/model_doc/dpt).

| Factors | Description | 
| ----------- | ----------- | 
| Groups | Multiple datasets compiled together | 
| Instrumentation | - |
| Environment | Inference completed on Intel Xeon Platinum 8280 CPU @ 2.70GHz with 8 physical cores and an NVIDIA RTX 2080 GPU. |
| Card Prompts | Model deployment on alternate hardware and software will change model performance |

| Metrics | Description | 
| ----------- | ----------- | 
| Model performance measures | Zero-shot Transfer |
| Decision thresholds | - | 
| Approaches to uncertainty and variability | - |

| Training and Evaluation Data | Description | 
| ----------- | ----------- | 
| Datasets | The dataset is called MIX 6, and contains around 1.4M images. The model was initialized with ImageNet-pretrained weights.|
| Motivation | To build a robust monocular depth prediction network |
| Preprocessing | "We resize the image such that the longer side is 384 pixels and train on random square crops of size 384. ... We perform random horizontal flips for data augmentation." See [Ranftl et al. (2021)](https://arxiv.org/abs/2103.13413) for more details. | 

## Quantitative Analyses
| Model | Training set | DIW WHDR | ETH3D AbsRel | Sintel AbsRel | KITTI δ>1.25 | NYU δ>1.25 | TUM δ>1.25 |
| --- | --- | --- | --- | --- | --- | --- | --- | 
| DPT - Large | MIX 6 | 10.82 (-13.2%) | 0.089 (-31.2%) | 0.270 (-17.5%) | 8.46 (-64.6%) | 8.32 (-12.9%) | 9.97 (-30.3%) |
| DPT - Hybrid | MIX 6 | 11.06 (-11.2%) | 0.093 (-27.6%) | 0.274 (-16.2%) | 11.56 (-51.6%) | 8.69 (-9.0%) | 10.89 (-23.2%) | 
| MiDaS  | MIX 6  | 12.95 (+3.9%)  | 0.116 (-10.5%)  | 0.329 (+0.5%)  | 16.08 (-32.7%)  | 8.71 (-8.8%)  | 12.51 (-12.5%)
| MiDaS [30]  | MIX 5  | 12.46  | 0.129  | 0.327  | 23.90  | 9.55  | 14.29 | 
 | Li [22]  | MD [22]  | 23.15  | 0.181  | 0.385  | 36.29  | 27.52  | 29.54 | 
 | Li [21]  | MC [21]  | 26.52  | 0.183  | 0.405  | 47.94  | 18.57  | 17.71 | 
 | Wang [40]  | WS [40]  | 19.09  | 0.205  | 0.390  | 31.92  | 29.57  | 20.18 | 
 | Xian [45]  | RW [45]  | 14.59  | 0.186 |  0.422  | 34.08 |  27.00 |  25.02 | 
 | Casser [5]  | CS [8]  | 32.80  | 0.235  | 0.422  | 21.15  | 39.58  | 37.18 | 

Table 1. Comparison to the state of the art on monocular depth estimation. We evaluate zero-shot cross-dataset transfer according to the
protocol defined in [30]. Relative performance is computed with respect to the original MiDaS model [30]. Lower is better for all metrics. ([Ranftl et al., 2021](https://arxiv.org/abs/2103.13413))


| Ethical Considerations | Description | 
| ----------- | ----------- | 
| Data | The training data come from multiple image datasets compiled together. |
| Human life | The model is not intended to inform decisions central to human life or flourishing. It is an aggregated set of monocular depth image datasets. | 
| Mitigations | No additional risk mitigation strategies were considered during model development. |
| Risks and harms | The extent of the risks involved by using the model remain unknown. |
| Use cases | - | 

| Caveats and Recommendations |
| ----------- | 
| Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. There are no additional caveats or recommendations for this model. |

### BibTeX entry and citation info

```bibtex
@article{DBLP:journals/corr/abs-2103-13413,
  author    = {Ren{\'{e}} Ranftl and
               Alexey Bochkovskiy and
               Vladlen Koltun},
  title     = {Vision Transformers for Dense Prediction},
  journal   = {CoRR},
  volume    = {abs/2103.13413},
  year      = {2021},
  url       = {https://arxiv.org/abs/2103.13413},
  eprinttype = {arXiv},
  eprint    = {2103.13413},
  timestamp = {Wed, 07 Apr 2021 15:31:46 +0200},
  biburl    = {https://dblp.org/rec/journals/corr/abs-2103-13413.bib},
  bibsource = {dblp computer science bibliography, https://dblp.org}
}
```