File size: 2,280 Bytes
0483abe bb650cc 0483abe 4719958 cd77fc8 4719958 3518c77 bb650cc 0483abe bb650cc 3518c77 bb650cc ac02df7 bb650cc 3518c77 bb650cc 3518c77 bb650cc ac02df7 bb650cc 3518c77 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 |
---
language:
- en
license: mit
tags:
- text-classfication
- int8
- Intel® Neural Compressor
- PostTrainingStatic
- onnx
datasets:
- glue
metrics:
- f1
model-index:
- name: electra-small-discriminator-mrpc-int8-static
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: GLUE MRPC
type: glue
args: mrpc
metrics:
- name: F1
type: f1
value: 0.900709219858156
---
# INT8 electra-small-discriminator-mrpc
## Post-training static quantization
### PyTorch
This is an INT8 PyTorch model quantized with [huggingface/optimum-intel](https://github.com/huggingface/optimum-intel) through the usage of [Intel® Neural Compressor](https://github.com/intel/neural-compressor).
The original fp32 model comes from the fine-tuned model [electra-small-discriminator-mrpc](https://huggingface.co/Intel/electra-small-discriminator-mrpc).
The calibration dataloader is the train dataloader. The default calibration sampling size 300 isn't divisible exactly by batch size 8, so
the real sampling size is 304.
#### Test result
| |INT8|FP32|
|---|:---:|:---:|
| **Accuracy (eval-f1)** |0.9007|0.8983|
| **Model size (MB)** |14|51.8|
#### Load with optimum:
```python
from optimum.intel.neural_compressor.quantization import IncQuantizedModelForSequenceClassification
int8_model = IncQuantizedModelForSequenceClassification.from_pretrained(
'Intel/electra-small-discriminator-mrpc-int8-static',
)
```
### ONNX
This is an INT8 ONNX model quantized with [Intel® Neural Compressor](https://github.com/intel/neural-compressor).
The original fp32 model comes from the fine-tuned model [electra-small-discriminator-mrpc](https://huggingface.co/Intel/electra-small-discriminator-mrpc).
The calibration dataloader is the eval dataloader. The default calibration sampling size 100 isn't divisible exactly by batch size 8. So the real sampling size is 104.
#### Test result
| |INT8|FP32|
|---|:---:|:---:|
| **Accuracy (eval-f1)** |0.8993|0.8983|
| **Model size (MB)** |32|52|
#### Load ONNX model:
```python
from optimum.onnxruntime import ORTModelForSequenceClassification
model = ORTModelForSequenceClassification.from_pretrained('Intel/electra-small-discriminator-mrpc-int8-static')
```
|