File size: 1,918 Bytes
6fdc5e7 65328e7 6fdc5e7 65328e7 aa281eb 65328e7 d4e876c 65328e7 aa281eb 65328e7 aa281eb 0f8d314 aa281eb 65328e7 b6c9459 0e0902d 48adad1 0e0902d 65328e7 aa281eb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 |
---
license: apache-2.0
datasets:
- lambada
language:
- en
library_name: transformers
pipeline_tag: text-generation
tags:
- text-generation-inference
- causal-lm
- int8
- ONNX
- PostTrainingStatic
- Intel® Neural Compressor
- neural-compressor
---
## Model Details: INT8 GPT-J 6B
GPT-J 6B is a transformer model trained using Ben Wang's [Mesh Transformer JAX](https://github.com/kingoflolz/mesh-transformer-jax/). "GPT-J" refers to the class of model, while "6B" represents the number of trainable parameters.
This int8 ONNX model is generated by [neural-compressor](https://github.com/intel/neural-compressor) and the fp32 model can be exported with below command:
```shell
python -m transformers.onnx --model=EleutherAI/gpt-j-6B onnx_gptj/ --framework pt --opset 13 --feature=causal-lm-with-past
```
| Model Detail | Description |
| ----------- | ----------- |
| Model Authors - Company | Intel |
| Date | April 10, 2022 |
| Version | 1 |
| Type | Text Generation |
| Paper or Other Resources | - |
| License | Apache 2.0 |
| Questions or Comments | [Community Tab](https://huggingface.co/Intel/gpt-j-6B-int8-static/discussions)|
| Intended Use | Description |
| ----------- | ----------- |
| Primary intended uses | You can use the raw model for text generation inference |
| Primary intended users | Anyone doing text generation inference |
| Out-of-scope uses | This model in most cases will need to be fine-tuned for your particular task. The model should not be used to intentionally create hostile or alienating environments for people.|
### How to use
Download the model and script by cloning the repository:
```shell
git clone https://huggingface.co/Intel/gpt-j-6B-int8-static
```
Then you can do inference based on the model and script 'evaluation.ipynb'.
## Metrics (Model Performance):
| Model | Model Size (GB) | Lambada Acc |
|---|:---:|:---:|
| FP32 |23|0.7954|
| INT8 |6|0.7944| |