## Examples Using the [🤗's Diffusers library](https://github.com/huggingface/diffusers) in a simple and efficient manner. ```python from PIL import Image import os import torch from diffusers import StableDiffusionUpscaleLDM3DPipeline, StableDiffusionLDM3DPipeline #Generate a rgb/depth output from LDM3D pipe_ldm3d = StableDiffusionLDM3DPipeline.from_pretrained("Intel/ldm3d-4c") pipe_ldm3d.to("cuda") prompt =f"A picture of some lemons on a table" output = pipe_ldm3d(prompt) rgb_image, depth_image = output.rgb, output.depth rgb_image[0].save(f"lemons_ldm3d_rgb.jpg") depth_image[0].save(f"lemons_ldm3d_depth.png") #Upscale the previous output to a resolution of (1024, 1024) pipe_ldm3d_upscale = StableDiffusionUpscaleLDM3DPipeline.from_pretrained("Intel/ldm3d-sr") pipe_ldm3d_upscale.to("cuda") low_res_img = Image.open(f"lemons_ldm3d_rgb.jpg").convert("RGB") low_res_depth = Image.open(f"lemons_ldm3d_depth.png").convert("L") outputs = pipe_ldm3d_upscale(prompt="high quality high resolution uhd 4k image", rgb=low_res_img, depth=low_res_depth, num_inference_steps=50, target_res=[1024, 1024]) upscaled_rgb, upscaled_depth =outputs.rgb[0], outputs.depth[0] upscaled_rgb.save(f"upscaled_lemons_rgb.png") upscaled_depth.save(f"upscaled_lemons_depth.png") ``` ## Results Output of ldm3d-4c | Upscaled output :-------------------------:|:-------------------------: ![ldm3d_rgb_results](lemons_ldm3d_rgb.jpg) | ![ldm3d_sr_rgb_results](upscaled_lemons_rgb.png) ![ldm3d_depth_results](lemons_ldm3d_depth.png) | ![ldm3d_sr_depth_results](upscaled_lemons_depth.png)