File size: 5,525 Bytes
dac7b46
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
from intel_extension_for_transformers.backends.neural_engine.compile import compile
# graph = compile("/home/ubuntu/mengfeil/IR/llama-7b-bf16/")
# graph = compile("/home/ubuntu/mengfeil/IR/llama-7b-int8/")
# graph = compile("./llama-7b-hf-conv-itrex-bf16")
graph = compile("/home/ubuntu/neuralchat_server/frameworks.ai.nlp-toolkit.intel-nlp-toolkit/examples/huggingface/pytorch/text-generation/deployment/bf16ir")
from transformers import AutoTokenizer, AutoModelForCausalLM, LlamaTokenizer, AutoModel, AutoConfig
import torch
import numpy as np
import torch.nn.functional as F
import time

model_name = "../mengfeil/llama-7b"
tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=False)
config = AutoConfig.from_pretrained(model_name)

#prompt = "Once upon a time, there existed a little girl who liked to have adventures." + \
#         " She wanted to go to places and meet new people, and have fun"
# prompt = "Once upon a time, there existed a little girl, who liked to have adventures. She wanted to go to places and meet new people, and have fun."
prompt = "A chat between a curious human and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the human's questions.\n Human: tell me something about China.\n Assistant:"

print(prompt)
init_input_ids = tokenizer(prompt, return_tensors="pt").input_ids[0]


input_ids = init_input_ids.clone()

attention_mask = torch.ones(len(input_ids)+1)
attention_mask[0] = 0
position_ids = torch.arange(len(input_ids))
past_key_value = tuple([(torch.zeros([1,32,1,128]), torch.zeros([1,32,1,128])) for i in range(32)])

input_ids = input_ids.unsqueeze(0)
attention_mask = attention_mask.unsqueeze(0)
position_ids = position_ids.unsqueeze(0)
all_input_ids = input_ids.clone()


# input_ids_1 = input_ids.cpu().numpy().astype(np.int32)
# attention_mask_1 = attention_mask.cpu().numpy().astype(np.int32)
# past_k_v = [past_key_value[i][j].cpu().numpy() for i in range(32) for j in range(2)]

max_new_tokens = 32
temperature = 0.9


def top_k_top_p_filtering(logits, top_k=0, top_p=0.0, filter_value=-float('Inf')):
    """ Filter a distribution of logits using top-k and/or nucleus (top-p) filtering
        Args:
            logits: logits distribution shape (vocabulary size)
            top_k >0: keep only top k tokens with highest probability (top-k filtering).
            top_p >0.0: keep the top tokens with cumulative probability >= top_p (nucleus filtering).
                Nucleus filtering is described in Holtzman et al. (http://arxiv.org/abs/1904.09751)
    """
    assert logits.dim() == 1  # batch size 1 for now - could be updated for more but the code would be less clear
    top_k = min(top_k, logits.size(-1))  # Safety check
    if top_k > 0:
        # Remove all tokens with a probability less than the last token of the top-k
        indices_to_remove = logits < torch.topk(logits, top_k)[0][..., -1, None]
        logits[indices_to_remove] = filter_value

    if top_p > 0.0:
        sorted_logits, sorted_indices = torch.sort(logits, descending=True)
        cumulative_probs = torch.cumsum(F.softmax(sorted_logits, dim=-1), dim=-1)

        # Remove tokens with cumulative probability above the threshold
        sorted_indices_to_remove = cumulative_probs > top_p
        # Shift the indices to the right to keep also the first token above the threshold
        sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[..., :-1].clone()
        sorted_indices_to_remove[..., 0] = 0

        indices_to_remove = sorted_indices[sorted_indices_to_remove]
        logits[indices_to_remove] = filter_value
    return logits


# start
total_time = 0.0
num_iter = 10
num_warmup = 3

for i in range(num_iter):

    input_ids_1 = input_ids.cpu().numpy().astype(np.int32)
    attention_mask_1 = attention_mask.cpu().numpy().astype(np.int32)
    past_k_v = [past_key_value[i][j].cpu().numpy() for i in range(32) for j in range(2)]
    output_ids = list(init_input_ids)
    
    tic = time.time()

    for step in range(max_new_tokens):
        a = time.time()
        predictions = graph.inference([input_ids_1, attention_mask_1] + past_k_v)
        # predictions = graph.inference([input_ids_1] + past_k_v + [attention_mask_1])
        print(time.time() - a)

        outs = []
        for key in predictions:
            outs.append(predictions[key])

        logits = outs[0]
        past_k_v = outs[1:]
        logits = torch.from_numpy(logits)

        next_token_logits = logits[:, -1, :]
        probs = torch.nn.functional.softmax(next_token_logits, dim=-1)
        token = int(torch.argmax(probs, dim=-1))

        """
        last_token_logits = logits[0][-1]
        logits = logits[0, -1, :] / temperature
        filtered_logits = top_k_top_p_filtering(logits, top_k=10, top_p=0.8)
        probabilities = F.softmax(filtered_logits, dim=-1)
        token = int(torch.multinomial(probabilities, 1))
        """

        output_ids.append(token)
        input_ids_1 = torch.tensor([[token]])
        attention_mask_1 = torch.cat([torch.from_numpy(attention_mask_1), torch.ones([1, 1])], dim=-1)
        input_ids_1 = input_ids_1.cpu().numpy().astype(np.int32)
        attention_mask_1 = attention_mask_1.cpu().numpy().astype(np.int32)
    
    toc = time.time()
    if i >= num_warmup:
        total_time += (toc - tic)
    # print(output_ids)
    print(tokenizer.decode(output_ids, skip_special_tokens=True))

print("Inference latency: %.3f ms." % (total_time / (num_iter - num_warmup) * 1000))