File size: 11,529 Bytes
b300ef4 37a4384 b300ef4 14f9323 37a4384 14f9323 37a4384 14f9323 37a4384 62e7b91 37a4384 14f9323 37a4384 14f9323 37a4384 14f9323 37a4384 14f9323 0ff1545 14f9323 fbbb8d6 14f9323 37a4384 478ba3c 37a4384 f1d0c6f 3995e9a 37a4384 f1d0c6f 37a4384 f1d0c6f 37a4384 f1d0c6f 37a4384 14f9323 8394403 14f9323 8394403 af2489c 8394403 af2489c 8394403 af2489c 8394403 af2489c 37a4384 af2489c 14f9323 37a4384 14f9323 37a4384 14f9323 37a4384 14f9323 37a4384 14f9323 37a4384 14f9323 37a4384 14f9323 37a4384 14f9323 6007258 37a4384 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 |
---
license: apache-2.0
tags:
- LLMs
- mistral
- Intel
pipeline_tag: text-generation
base_model: mistralai/Mistral-7B-v0.1
model-index:
- name: neural-chat-7b-v3-1
results:
- task:
type: Large Language Model
name: Large Language Model
dataset:
type: Open-Orca/SlimOrca
name: Open-Orca/SlimOrca
metrics:
- type: ARC (25-shot)
value: 66.21
name: ARC (25-shot)
verified: true
- type: HellaSwag (10-shot)
value: 83.64
name: HellaSwag (10-shot)
verified: true
- type: MMLU (5-shot)
value: 62.37
name: MMLU (5-shot)
verified: true
- type: TruthfulQA (0-shot)
value: 59.65
name: TruthfulQA (0-shot)
verified: true
- type: Winogrande (5-shot)
value: 78.14
name: Winogrande (5-shot)
verified: true
- type: GSM8K (5-shot)
value: 19.56
name: GSM8K (5-shot)
verified: true
- type: DROP (3-shot)
value: 43.84
name: DROP (3-shot)
verified: true
datasets:
- Open-Orca/SlimOrca
language:
- en
---
## Model Details: Neural-Chat-v3-1
This model is a fine-tuned 7B parameter LLM on the Intel Gaudi 2 processor from the [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) on the open source dataset [Open-Orca/SlimOrca](https://huggingface.co/datasets/Open-Orca/SlimOrca). The model was aligned using the Direct Performance Optimization (DPO) method with [Intel/orca_dpo_pairs](https://huggingface.co/datasets/Intel/orca_dpo_pairs). For more information, refer to the Medium article [The Practice of Supervised Fine-tuning and Direct Preference Optimization on Intel Gaudi2](https://medium.com/@NeuralCompressor/the-practice-of-supervised-finetuning-and-direct-preference-optimization-on-habana-gaudi2-a1197d8a3cd3).
<p align="center">
<img src="https://cdn-uploads.huggingface.co/production/uploads/6297f0e30bd2f58c647abb1d/ctASHUT5QYIxMsOFa-sHC.webp" width="500"/>
Photo by Google DeepMind on Unsplash
</p>
| Model Detail | Description |
| ----------- | ----------- |
| Model Authors - Company | Intel. The NeuralChat team with members from DCAI/AISE/AIPT. Core team members: Kaokao Lv, Liang Lv, Chang Wang, Wenxin Zhang, Xuhui Ren, and Haihao Shen.|
| Date | October, 2023 |
| Version | v3-1 |
| Type | 7B Large Language Model |
| Paper or Other Resources | [Medium Blog](https://medium.com/@NeuralCompressor/the-practice-of-supervised-finetuning-and-direct-preference-optimization-on-habana-gaudi2-a1197d8a3cd3) |
| License | Apache 2.0 |
| Questions or Comments | [Community Tab](https://huggingface.co/Intel/neural-chat-7b-v3-1/discussions) and [Intel DevHub Discord](https://discord.gg/rv2Gp55UJQ)|
| Intended Use | Description |
| ----------- | ----------- |
| Primary intended uses | You can use the fine-tuned model for several language-related tasks. Checkout the [LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) to see how this model is doing. |
| Primary intended users | Anyone doing inference on language-related tasks. |
| Out-of-scope uses | This model in most cases will need to be fine-tuned for your particular task. The model should not be used to intentionally create hostile or alienating environments for people.|
## How To Use
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-04
- train_batch_size: 1
- eval_batch_size: 2
- seed: 42
- distributed_type: multi-HPU
- num_devices: 8
- gradient_accumulation_steps: 8
- total_train_batch_size: 64
- total_eval_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.03
- num_epochs: 2.0
### Reproduce the model
Here is the sample code to reproduce the model: [GitHub sample code](https://github.com/intel/intel-extension-for-transformers/blob/main/intel_extension_for_transformers/neural_chat/examples/finetuning/finetune_neuralchat_v3). Here is the documentation to reproduce building the model:
```bash
git clone https://github.com/intel/intel-extension-for-transformers.git
cd intel-extension-for-transformers
docker build --no-cache ./ --target hpu --build-arg REPO=https://github.com/intel/intel-extension-for-transformers.git --build-arg ITREX_VER=main -f ./intel_extension_for_transformers/neural_chat/docker/Dockerfile -t chatbot_finetuning:latest
docker run -it --runtime=habana -e HABANA_VISIBLE_DEVICES=all -e OMPI_MCA_btl_vader_single_copy_mechanism=none --cap-add=sys_nice --net=host --ipc=host chatbot_finetuning:latest
# after entering docker container
cd examples/finetuning/finetune_neuralchat_v3
```
We select the latest pretrained mistralai/Mistral-7B-v0.1 and the open source dataset Open-Orca/SlimOrca to conduct the experiment.
The below script use deepspeed zero2 to lanuch the training with 8 cards Gaudi2. In the `finetune_neuralchat_v3.py`, the default `use_habana=True, use_lazy_mode=True, device="hpu"` for Gaudi2. And if you want to run it on NVIDIA GPU, you can set them `use_habana=False, use_lazy_mode=False, device="auto"`.
```python
deepspeed --include localhost:0,1,2,3,4,5,6,7 \
--master_port 29501 \
finetune_neuralchat_v3.py
```
Merge the LoRA weights:
```python
python apply_lora.py \
--base-model-path mistralai/Mistral-7B-v0.1 \
--lora-model-path finetuned_model/ \
--output-path finetuned_model_lora
```
### FP32 Inference with Transformers
```python
import transformers
model_name = 'Intel/neural-chat-7b-v3-1'
model = transformers.AutoModelForCausalLM.from_pretrained(model_name)
tokenizer = transformers.AutoTokenizer.from_pretrained(model_name)
def generate_response(system_input, user_input):
# Format the input using the provided template
prompt = f"### System:\n{system_input}\n### User:\n{user_input}\n### Assistant:\n"
# Tokenize and encode the prompt
inputs = tokenizer.encode(prompt, return_tensors="pt", add_special_tokens=False)
# Generate a response
outputs = model.generate(inputs, max_length=1000, num_return_sequences=1)
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
# Extract only the assistant's response
return response.split("### Assistant:\n")[-1]
# Example usage
system_input = "You are a math expert assistant. Your mission is to help users understand and solve various math problems. You should provide step-by-step solutions, explain reasonings and give the correct answer."
user_input = "calculate 100 + 520 + 60"
response = generate_response(system_input, user_input)
print(response)
# expected response
"""
To calculate the sum of 100, 520, and 60, we will follow these steps:
1. Add the first two numbers: 100 + 520
2. Add the result from step 1 to the third number: (100 + 520) + 60
Step 1: Add 100 and 520
100 + 520 = 620
Step 2: Add the result from step 1 to the third number (60)
(620) + 60 = 680
So, the sum of 100, 520, and 60 is 680.
"""
```
### INT4 Inference with Transformers and Intel Extension for Transformers
```python
from transformers import AutoTokenizer, TextStreamer
from intel_extension_for_transformers.transformers import AutoModelForCausalLM, WeightOnlyQuantConfig
model_name = "Intel/neural-chat-7b-v3-1"
config = WeightOnlyQuantConfig(compute_dtype="int8", weight_dtype="int4")
prompt = "Once upon a time, there existed a little girl,"
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
inputs = tokenizer(prompt, return_tensors="pt").input_ids
streamer = TextStreamer(tokenizer)
model = AutoModelForCausalLM.from_pretrained(model_name, quantization_config=config)
outputs = model.generate(inputs, streamer=streamer, max_new_tokens=300)
```
| Factors | Description |
| ----------- | ----------- |
| Groups | More details about the dataset and annotations can be found at [Open-Orca/SlimOrca](https://huggingface.co/datasets/Open-Orca/SlimOrca) and the associated paper at https://arxiv.org/abs/2306.02707. |
| Instrumentation | The performance of the model can vary depending on the inputs to the model. In this case, the prompts provided can drastically change the prediction of the language model. |
| Environment | The model was trained on the Intel Gaudi 2 processor (8 cards). |
| Card Prompts | Model deployment on alternate hardware and software will change model performance. The model evaluation factors are from the Hugging Face LLM leaderboard: ARC, HellaSwag, MMLU, TruthfulQA, Winogrande, GSM8K, and DROP (see Quantitative Analyses below). |
| Metrics | Description |
| ----------- | ----------- |
| Model performance measures | The model performance was evaluated against other LLMs according to the measures on the LLM leaderboard. These were selected as this has become the standard for LLM performance. |
| Decision thresholds | No decision thresholds were used. |
| Approaches to uncertainty and variability | - |
| Training and Evaluation Data | Description |
| ----------- | ----------- |
| Datasets | The training data are from [Open-Orca/SlimOrca](https://huggingface.co/datasets/Open-Orca/SlimOrca). There is no contamination from the GSM8k test set, as this is not a part of the Open-Orca/SlimOrca dataset.|
| Motivation | - |
| Preprocessing | - |
## Quantitative Analyses
The model was submitted to the [LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard). The detailed submission can be found here: [https://huggingface.co/datasets/open-llm-leaderboard/details_Intel__neural-chat-7b-v3-1](https://huggingface.co/datasets/open-llm-leaderboard/details_Intel__neural-chat-7b-v3-1). The metrics can be found below and show that the model has significantly improved performance from Mistral-7B-v0.1 and neural-chat-7b-v3.
| Model | Average ⬆️| ARC (25-s) ⬆️ | HellaSwag (10-s) ⬆️ | MMLU (5-s) ⬆️| TruthfulQA (MC) (0-s) ⬆️ | Winogrande (5-s) | GSM8K (5-s) | DROP (3-s) |
| --- | --- | --- | --- | --- | --- | --- | --- | --- |
|[mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) | 50.32 | 59.58 | 83.31 | 64.16 | 42.15 | 78.37 | 18.12 | 6.14 |
| [Intel/neural-chat-7b-v3](https://huggingface.co/Intel/neural-chat-7b-v3) | **57.31** | 67.15 | 83.29 | 62.26 | 58.77 | 78.06 | 1.21 | 50.43 |
| [Intel/neural-chat-7b-v3-1](https://huggingface.co/Intel/neural-chat-7b-v3-1) | **59.06** | 66.21 | 83.64 | 62.37 | 59.65 | 78.14 | 19.56 | 43.84 |
## Ethical Considerations and Limitations
Neural-chat-7b-v3-1 can produce factually incorrect output, and should not be relied on to produce factually accurate information. Because of the limitations of the pretrained model and the finetuning datasets, it is possible that this model could generate lewd, biased or otherwise offensive outputs.
Therefore, before deploying any applications of neural-chat-7b-v3-1, developers should perform safety testing.
## Caveats and Recommendations
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model.
Here are a couple of useful links to learn more about Intel's AI software:
* Intel Neural Compressor [link](https://github.com/intel/neural-compressor)
* Intel Extension for Transformers [link](https://github.com/intel/intel-extension-for-transformers)
## Disclaimer
The license on this model does not constitute legal advice. We are not responsible for the actions of third parties who use this model. Please cosult an attorney before using this model for commercial purposes. |