File size: 5,134 Bytes
62a6e70
48928a2
 
 
62a6e70
 
 
 
 
 
19f7e3e
 
 
62a6e70
 
 
48928a2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
62a6e70
 
 
 
 
 
 
03aa328
 
62a6e70
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
48928a2
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
---
language:
- en
license: apache-2.0
tags:
- merge
- mergekit
- lazymergekit
- maywell/PiVoT-0.1-Evil-a
- mlabonne/NeuralOmniBeagle-7B-v2
- roleplay
- rp
- not-for-all-audiences
base_model:
- maywell/PiVoT-0.1-Evil-a
- mlabonne/NeuralOmniBeagle-7B-v2
model-index:
- name: Konstanta-7B
  results:
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: AI2 Reasoning Challenge (25-Shot)
      type: ai2_arc
      config: ARC-Challenge
      split: test
      args:
        num_few_shot: 25
    metrics:
    - type: acc_norm
      value: 70.05
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Inv/Konstanta-7B
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: HellaSwag (10-Shot)
      type: hellaswag
      split: validation
      args:
        num_few_shot: 10
    metrics:
    - type: acc_norm
      value: 87.5
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Inv/Konstanta-7B
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MMLU (5-Shot)
      type: cais/mmlu
      config: all
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 65.06
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Inv/Konstanta-7B
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: TruthfulQA (0-shot)
      type: truthful_qa
      config: multiple_choice
      split: validation
      args:
        num_few_shot: 0
    metrics:
    - type: mc2
      value: 65.43
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Inv/Konstanta-7B
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: Winogrande (5-shot)
      type: winogrande
      config: winogrande_xl
      split: validation
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 82.16
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Inv/Konstanta-7B
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: GSM8k (5-shot)
      type: gsm8k
      config: main
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 71.04
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Inv/Konstanta-7B
      name: Open LLM Leaderboard
---

# Konstanta-7B

Konstanta-7B is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing):
* [maywell/PiVoT-0.1-Evil-a](https://huggingface.co/maywell/PiVoT-0.1-Evil-a)
* [mlabonne/NeuralOmniBeagle-7B-v2](https://huggingface.co/mlabonne/NeuralOmniBeagle-7B-v2)

This is a test merge that is supposed to improve Kunoichi by merging it with new Beagle model and PiVoT Evil, which both show good performance. Even though the model's name is in Russian, it is not really capable of properly using it, as it was not the main goal of the model.

## 🧩 Configuration

```yaml
merge_method: dare_ties
dtype: bfloat16
parameters:
  int8_mask: true
base_model: SanjiWatsuki/Kunoichi-DPO-v2-7B
models:
  - model: SanjiWatsuki/Kunoichi-DPO-v2-7B
  - model: maywell/PiVoT-0.1-Evil-a
    parameters:
      density: 0.65
      weight: 0.15
  - model: mlabonne/NeuralOmniBeagle-7B-v2
    parameters:
      density: 0.85
      weight: 0.45
```

## 💻 Usage

```python
!pip install -qU transformers accelerate

from transformers import AutoTokenizer
import transformers
import torch

model = "Inv/Konstanta-7B"
messages = [{"role": "user", "content": "What is a large language model?"}]

tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
    "text-generation",
    model=model,
    torch_dtype=torch.float16,
    device_map="auto",
)

outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
```
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_Inv__Konstanta-7B)

|             Metric              |Value|
|---------------------------------|----:|
|Avg.                             |73.54|
|AI2 Reasoning Challenge (25-Shot)|70.05|
|HellaSwag (10-Shot)              |87.50|
|MMLU (5-Shot)                    |65.06|
|TruthfulQA (0-shot)              |65.43|
|Winogrande (5-shot)              |82.16|
|GSM8k (5-shot)                   |71.04|