--- base_model: - mistralai/Mistral-7B-v0.1 library_name: transformers tags: - mergekit - merge - mistralai/Mistral-7B-v0.1 - SanjiWatsuki/Kunoichi-DPO-v2-7B - maywell/PiVoT-0.1-Evil-a - mlabonne/ArchBeagle-7B - NeverSleep/Noromaid-7B-0.4-DPO --- # konstanta-final This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit). ## Merge Details ### Merge Method This model was merged using the SLERP merge method. ### Models Merged The following models were included in the merge: * [SanjiWatsuki/Kunoichi-DPO-v2-7B](https://huggingface.co/SanjiWatsuki/Kunoichi-DPO-v2-7B) * [maywell/PiVoT-0.1-Evil-a](https://huggingface.co/maywell/PiVoT-0.1-Evil-a) * [mlabonne/ArchBeagle-7B](https://huggingface.co/mlabonne/ArchBeagle-7B) * [NeverSleep/Noromaid-7B-0.4-DPO](https://huggingface.co/NeverSleep/Noromaid-7B-0.4-DPO) ### Configuration The following YAML configuration was used to produce this model (to reproduce use mergekit-mega command): ```yaml base_model: mistralai/Mistral-7B-v0.1 dtype: float16 merge_method: dare_ties parameters: int8_mask: true slices: - sources: - layer_range: [0, 32] model: mistralai/Mistral-7B-v0.1 - layer_range: [0, 32] model: : SanjiWatsuki/Kunoichi-DPO-v2-7B parameters: density: 0.8 weight: 0.5 - layer_range: [0, 32] model: : maywell/PiVoT-0.1-Evil-a parameters: density: 0.3 weight: 0.15 name: first-step --- base_model: mistralai/Mistral-7B-v0.1 dtype: float16 merge_method: dare_ties parameters: int8_mask: true slices: - sources: - layer_range: [0, 32] model: mistralai/Mistral-7B-v0.1 - layer_range: [0, 32] model: mlabonne/ArchBeagle-7B parameters: density: 0.8 weight: 0.75 - layer_range: [0, 32] model: LakoMoor/Silicon-Alice-7B parameters: density: 0.6 weight: 0.30 name: second-step --- models: - model: first-step - model: second-step merge_method: slerp base_model: first-step parameters: t: - filter: self_attn value: [0, 0.5, 0.3, 0.7, 1] - filter: mlp value: [1, 0.5, 0.7, 0.3, 0] - value: 0.5 int8_mask: true normalize: true dtype: float16 ```