File size: 1,549 Bytes
ba1a9d3
 
 
 
 
7634146
 
 
 
ba1a9d3
 
7634146
 
 
 
 
 
 
 
 
 
 
ba1a9d3
 
 
 
 
 
 
7634146
 
 
 
 
 
 
 
ba1a9d3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4da5155
ba1a9d3
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
---
license: apache-2.0
base_model: google/t5-small-lm-adapt
tags:
- generated_from_trainer
datasets:
- Isotonic/planner_dataset
metrics:
- rouge
model-index:
- name: plan_t5
  results:
  - task:
      name: Summarization
      type: summarization
    dataset:
      name: Isotonic/planner_dataset
      type: Isotonic/planner_dataset
    metrics:
    - name: Rouge1
      type: rouge
      value: 58.1228
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# plan_t5

This model is a fine-tuned version of [google/t5-small-lm-adapt](https://huggingface.co/google/t5-small-lm-adapt) on the Isotonic/planner_dataset dataset.
It achieves the following results on the evaluation set:
- Loss: 1.4366
- Rouge1: 58.1228
- Rouge2: 24.3461
- Rougel: 58.1313
- Rougelsum: 58.1335
- Gen Len: 7.9747

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 37
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.2
- num_epochs: 5.0

### Training results



### Framework versions

- Transformers 4.39.3
- Pytorch 2.1.0+cu118
- Datasets 2.18.0
- Tokenizers 0.15.2