Initial commit
Browse files- README.md +1 -1
- a2c-PandaReachDense-v2.zip +2 -2
- a2c-PandaReachDense-v2/data +27 -25
- a2c-PandaReachDense-v2/policy.optimizer.pth +2 -2
- a2c-PandaReachDense-v2/policy.pth +2 -2
- config.json +1 -1
- replay.mp4 +0 -0
- results.json +1 -1
- vec_normalize.pkl +1 -1
README.md
CHANGED
@@ -16,7 +16,7 @@ model-index:
|
|
16 |
type: PandaReachDense-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
-
value: -
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
|
|
16 |
type: PandaReachDense-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
+
value: -0.76 +/- 0.37
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
a2c-PandaReachDense-v2.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2802841eaa663d82e2fd5981ef0012b5c7684bac9f2afb687cdfbe29b9403ce8
|
3 |
+
size 111015
|
a2c-PandaReachDense-v2/data
CHANGED
@@ -4,14 +4,16 @@
|
|
4 |
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the feature extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
-
"__init__": "<function MultiInputActorCriticPolicy.__init__ at
|
8 |
"__abstractmethods__": "frozenset()",
|
9 |
-
"_abc_impl": "<_abc._abc_data object at
|
10 |
},
|
11 |
"verbose": 1,
|
12 |
"policy_kwargs": {
|
13 |
":type:": "<class 'dict'>",
|
14 |
-
":serialized:": "
|
|
|
|
|
15 |
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
16 |
"optimizer_kwargs": {
|
17 |
"alpha": 0.99,
|
@@ -40,55 +42,55 @@
|
|
40 |
"bounded_above": "[ True True True]",
|
41 |
"_np_random": null
|
42 |
},
|
43 |
-
"n_envs":
|
44 |
-
"num_timesteps":
|
45 |
-
"_total_timesteps":
|
46 |
"_num_timesteps_at_start": 0,
|
47 |
"seed": null,
|
48 |
"action_noise": null,
|
49 |
-
"start_time":
|
50 |
-
"learning_rate": 0.
|
51 |
-
"tensorboard_log":
|
52 |
"lr_schedule": {
|
53 |
":type:": "<class 'function'>",
|
54 |
-
":serialized:": "gAWVlQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMYy9ob21lL2J5cm9uL21pbmljb25kYTMvZW52cy9tbC1hZ2VudHMvbGliL3B5dGhvbjMuOS9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5RoDHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB59lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+
|
55 |
},
|
56 |
"_last_obs": {
|
57 |
":type:": "<class 'collections.OrderedDict'>",
|
58 |
-
":serialized:": "
|
59 |
-
"achieved_goal": "[[0.
|
60 |
-
"desired_goal": "[[-1.
|
61 |
-
"observation": "[[ 4.
|
62 |
},
|
63 |
"_last_episode_starts": {
|
64 |
":type:": "<class 'numpy.ndarray'>",
|
65 |
-
":serialized:": "
|
66 |
},
|
67 |
"_last_original_obs": {
|
68 |
":type:": "<class 'collections.OrderedDict'>",
|
69 |
-
":serialized:": "
|
70 |
-
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
71 |
-
"desired_goal": "[[ 0.
|
72 |
-
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
73 |
},
|
74 |
"_episode_num": 0,
|
75 |
-
"use_sde":
|
76 |
"sde_sample_freq": -1,
|
77 |
"_current_progress_remaining": 0.0,
|
78 |
"ep_info_buffer": {
|
79 |
":type:": "<class 'collections.deque'>",
|
80 |
-
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////
|
81 |
},
|
82 |
"ep_success_buffer": {
|
83 |
":type:": "<class 'collections.deque'>",
|
84 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
85 |
},
|
86 |
-
"_n_updates":
|
87 |
-
"n_steps":
|
88 |
"gamma": 0.99,
|
89 |
-
"gae_lambda":
|
90 |
"ent_coef": 0.0,
|
91 |
-
"vf_coef": 0.
|
92 |
"max_grad_norm": 0.5,
|
93 |
"normalize_advantage": false
|
94 |
}
|
|
|
4 |
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the feature extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f83d03c3310>",
|
8 |
"__abstractmethods__": "frozenset()",
|
9 |
+
"_abc_impl": "<_abc._abc_data object at 0x7f83d03c1980>"
|
10 |
},
|
11 |
"verbose": 1,
|
12 |
"policy_kwargs": {
|
13 |
":type:": "<class 'dict'>",
|
14 |
+
":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
|
15 |
+
"log_std_init": -2,
|
16 |
+
"ortho_init": false,
|
17 |
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
18 |
"optimizer_kwargs": {
|
19 |
"alpha": 0.99,
|
|
|
42 |
"bounded_above": "[ True True True]",
|
43 |
"_np_random": null
|
44 |
},
|
45 |
+
"n_envs": 8,
|
46 |
+
"num_timesteps": 2000000,
|
47 |
+
"_total_timesteps": 2000000,
|
48 |
"_num_timesteps_at_start": 0,
|
49 |
"seed": null,
|
50 |
"action_noise": null,
|
51 |
+
"start_time": 1682470274.0131578,
|
52 |
+
"learning_rate": 0.00096,
|
53 |
+
"tensorboard_log": "runs/PandaReachDense-v2",
|
54 |
"lr_schedule": {
|
55 |
":type:": "<class 'function'>",
|
56 |
+
":serialized:": "gAWVlQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMYy9ob21lL2J5cm9uL21pbmljb25kYTMvZW52cy9tbC1hZ2VudHMvbGliL3B5dGhvbjMuOS9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5RoDHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB59lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9PdRBNVR1phZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
57 |
},
|
58 |
"_last_obs": {
|
59 |
":type:": "<class 'collections.OrderedDict'>",
|
60 |
+
":serialized:": "gAWVewIAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolmAAAAAAAAAAlVDZPqmuTbpDcQo/lVDZPqmuTbpDcQo/lVDZPqmuTbpDcQo/lVDZPqmuTbpDcQo/lVDZPqmuTbpDcQo/lVDZPqmuTbpDcQo/lVDZPqmuTbpDcQo/lVDZPqmuTbpDcQo/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksISwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcolmAAAAAAAAAADKONPaPWdj8gwsq/DlmfP1lKc78CTdq/2OrAv7EZsr/GwRc9di7Uv3LMsT8OTaA/YCVFvg1Epz+KPku/+sHGPh+9Lj/kSqK/FVA8v+3emT9BabS/jrWUv5ALSb/lY5w/lGgOSwhLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWwAAAAAAAAACVUNk+qa5NukNxCj93Z7w90I2duCkjlj2VUNk+qa5NukNxCj93Z7w90I2duCkjlj2VUNk+qa5NukNxCj93Z7w90I2duCkjlj2VUNk+qa5NukNxCj93Z7w90I2duCkjlj2VUNk+qa5NukNxCj93Z7w90I2duCkjlj2VUNk+qa5NukNxCj93Z7w90I2duCkjlj2VUNk+qa5NukNxCj93Z7w90I2duCkjlj2VUNk+qa5NukNxCj93Z7w90I2duCkjlj2UaA5LCEsGhpRoEnSUUpR1Lg==",
|
61 |
+
"achieved_goal": "[[ 0.42444292 -0.00078462 0.54079074]\n [ 0.42444292 -0.00078462 0.54079074]\n [ 0.42444292 -0.00078462 0.54079074]\n [ 0.42444292 -0.00078462 0.54079074]\n [ 0.42444292 -0.00078462 0.54079074]\n [ 0.42444292 -0.00078462 0.54079074]\n [ 0.42444292 -0.00078462 0.54079074]\n [ 0.42444292 -0.00078462 0.54079074]]",
|
62 |
+
"desired_goal": "[[ 0.06915864 0.9642126 -1.5840492 ]\n [ 1.2449052 -0.9503532 -1.7054751 ]\n [-1.5071669 -1.391409 0.03705003]\n [-1.6576679 1.3890517 1.2523515 ]\n [-0.19252539 1.3067642 -0.793923 ]\n [ 0.38819867 0.68257326 -1.2679105 ]\n [-0.73559695 1.2021157 -1.4094621 ]\n [-1.1617906 -0.7853327 1.2217985 ]]",
|
63 |
+
"observation": "[[ 4.2444292e-01 -7.8461558e-04 5.4079074e-01 9.1994219e-02\n -7.5127580e-05 7.3309250e-02]\n [ 4.2444292e-01 -7.8461558e-04 5.4079074e-01 9.1994219e-02\n -7.5127580e-05 7.3309250e-02]\n [ 4.2444292e-01 -7.8461558e-04 5.4079074e-01 9.1994219e-02\n -7.5127580e-05 7.3309250e-02]\n [ 4.2444292e-01 -7.8461558e-04 5.4079074e-01 9.1994219e-02\n -7.5127580e-05 7.3309250e-02]\n [ 4.2444292e-01 -7.8461558e-04 5.4079074e-01 9.1994219e-02\n -7.5127580e-05 7.3309250e-02]\n [ 4.2444292e-01 -7.8461558e-04 5.4079074e-01 9.1994219e-02\n -7.5127580e-05 7.3309250e-02]\n [ 4.2444292e-01 -7.8461558e-04 5.4079074e-01 9.1994219e-02\n -7.5127580e-05 7.3309250e-02]\n [ 4.2444292e-01 -7.8461558e-04 5.4079074e-01 9.1994219e-02\n -7.5127580e-05 7.3309250e-02]]"
|
64 |
},
|
65 |
"_last_episode_starts": {
|
66 |
":type:": "<class 'numpy.ndarray'>",
|
67 |
+
":serialized:": "gAWVewAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYIAAAAAAAAAAEBAQEBAQEBlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlC4="
|
68 |
},
|
69 |
"_last_original_obs": {
|
70 |
":type:": "<class 'collections.OrderedDict'>",
|
71 |
+
":serialized:": "gAWVewIAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolmAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksISwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcolmAAAAAAAAAA29S6vTj+3L0UZkc+x0msPfmFnbz4EDA+QmnEvbLZVT0uP3M+8xT4PQF1BD5NUAQ+Pt//vevLYb3sRHQ+4rzRvSMp5z1XcnI9vJy4OrA8tD2empA+ydPHvT6OBT76rWY+lGgOSwhLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWwAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LCEsGhpRoEnSUUpR1Lg==",
|
72 |
+
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
73 |
+
"desired_goal": "[[-0.0912263 -0.10790676 0.19472533]\n [ 0.08412509 -0.01922892 0.17193973]\n [-0.09590389 0.05220956 0.2375457 ]\n [ 0.12113371 0.12935258 0.12921257]\n [-0.12493752 -0.05512611 0.23854417]\n [-0.10241105 0.11287143 0.05919107]\n [ 0.00140848 0.08800638 0.28242964]\n [-0.09757192 0.13042542 0.22527304]]",
|
74 |
+
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
75 |
},
|
76 |
"_episode_num": 0,
|
77 |
+
"use_sde": true,
|
78 |
"sde_sample_freq": -1,
|
79 |
"_current_progress_remaining": 0.0,
|
80 |
"ep_info_buffer": {
|
81 |
":type:": "<class 'collections.deque'>",
|
82 |
+
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIEwt8Rbde5L+UhpRSlIwBbJRLMowBdJRHQK2L7UiILw51fZQoaAZoCWgPQwgWLxaGyOnvv5SGlFKUaBVLMmgWR0Cti8pAUtZndX2UKGgGaAloD0MIS3LAribP4b+UhpRSlGgVSzJoFkdArYupmNBF/nV9lChoBmgJaA9DCOEkzR/T2ue/lIaUUpRoFUsyaBZHQK2LgueSSvF1fZQoaAZoCWgPQwivljszwXDiv5SGlFKUaBVLMmgWR0CtjhJr1uiwdX2UKGgGaAloD0MI+62dKAmJ5b+UhpRSlGgVSzJoFkdArY3vHHWBjHV9lChoBmgJaA9DCOHtQQjIF+C/lIaUUpRoFUsyaBZHQK2NzLDAJsx1fZQoaAZoCWgPQwg2VmKelTTov5SGlFKUaBVLMmgWR0Ctjau2AoXsdX2UKGgGaAloD0MIe4hGdxA747+UhpRSlGgVSzJoFkdArY2JUFSsKnV9lChoBmgJaA9DCB+DFadaC+y/lIaUUpRoFUsyaBZHQK2NZmEoOQR1fZQoaAZoCWgPQwiRYKqZtdTyv5SGlFKUaBVLMmgWR0CtjUXYcvM9dX2UKGgGaAloD0MIJxdjYB1H47+UhpRSlGgVSzJoFkdArY0fXGwRoXV9lChoBmgJaA9DCNZvJqYLsdW/lIaUUpRoFUsyaBZHQK2PjdJJ5FB1fZQoaAZoCWgPQwh5sMVun1Xyv5SGlFKUaBVLMmgWR0Ctj2qZlWfcdX2UKGgGaAloD0MIhgFLrmJx67+UhpRSlGgVSzJoFkdArY9IQe3hGnV9lChoBmgJaA9DCM3NN6J71ua/lIaUUpRoFUsyaBZHQK2PJyLhrFh1fZQoaAZoCWgPQwg0EMtmDkniv5SGlFKUaBVLMmgWR0CtjwSgPEsKdX2UKGgGaAloD0MI2uVbH9ab5r+UhpRSlGgVSzJoFkdArY7hpDeCTXV9lChoBmgJaA9DCGMJa2PshPq/lIaUUpRoFUsyaBZHQK2OwN4qwyJ1fZQoaAZoCWgPQwjVdhN803Twv5SGlFKUaBVLMmgWR0CtjppCjUNKdX2UKGgGaAloD0MIxw4qcR3j7L+UhpRSlGgVSzJoFkdArZEOEGqxT3V9lChoBmgJaA9DCA8r3PKRFOe/lIaUUpRoFUsyaBZHQK2Q6tPpIMB1fZQoaAZoCWgPQwg4LuOmBhriv5SGlFKUaBVLMmgWR0CtkMhHLA58dX2UKGgGaAloD0MIxxFr8SmA5L+UhpRSlGgVSzJoFkdArZCnL5h0AHV9lChoBmgJaA9DCHLg1XJnJuK/lIaUUpRoFUsyaBZHQK2QhJyQxN91fZQoaAZoCWgPQwg2lNqLaDviv5SGlFKUaBVLMmgWR0CtkGGseXAudX2UKGgGaAloD0MIguUIGciz87+UhpRSlGgVSzJoFkdArZBBHAh0Q3V9lChoBmgJaA9DCPHydK4oJfe/lIaUUpRoFUsyaBZHQK2QGoOx0Mh1fZQoaAZoCWgPQwiYNEbrqOrxv5SGlFKUaBVLMmgWR0Ctko4UFjd6dX2UKGgGaAloD0MI4dQHkneO47+UhpRSlGgVSzJoFkdArZJqsbNr03V9lChoBmgJaA9DCDLJyFnY0+G/lIaUUpRoFUsyaBZHQK2SSDxLCep1fZQoaAZoCWgPQwhGelG7XwXzv5SGlFKUaBVLMmgWR0CtkicbrC3xdX2UKGgGaAloD0MIj6flB67y7b+UhpRSlGgVSzJoFkdArZIEkyDZlHV9lChoBmgJaA9DCCV0l8RZkeC/lIaUUpRoFUsyaBZHQK2R4ZNwiq11fZQoaAZoCWgPQwj6Cz1i9NzXv5SGlFKUaBVLMmgWR0CtkcDJ+2E1dX2UKGgGaAloD0MIS8lyEkrf77+UhpRSlGgVSzJoFkdArZGaKziS73V9lChoBmgJaA9DCES+S6lLBvK/lIaUUpRoFUsyaBZHQK2UHLcsUZh1fZQoaAZoCWgPQwgqqn6l8+Hyv5SGlFKUaBVLMmgWR0Ctk/mWUr08dX2UKGgGaAloD0MIzR5oBYYs9b+UhpRSlGgVSzJoFkdArZPXJHRTj3V9lChoBmgJaA9DCNj0oKAUreq/lIaUUpRoFUsyaBZHQK2TtjsD4g11fZQoaAZoCWgPQwhKDAIrh5bnv5SGlFKUaBVLMmgWR0Ctk5PIGQjmdX2UKGgGaAloD0MIe0/ltKdk4b+UhpRSlGgVSzJoFkdArZNxDE3sHHV9lChoBmgJaA9DCPz+zYsTX+S/lIaUUpRoFUsyaBZHQK2TUIFeOXF1fZQoaAZoCWgPQwj4a7JGPcT2v5SGlFKUaBVLMmgWR0CtkynryDqXdX2UKGgGaAloD0MIONibGJKT8r+UhpRSlGgVSzJoFkdArZWoVoHs1XV9lChoBmgJaA9DCKsEi8OZ3++/lIaUUpRoFUsyaBZHQK2VhSXMQmN1fZQoaAZoCWgPQwhRFr6+1iXiv5SGlFKUaBVLMmgWR0CtlWKx9oexdX2UKGgGaAloD0MIZVQZxt1g8b+UhpRSlGgVSzJoFkdArZVBiuuA7XV9lChoBmgJaA9DCKpGrwYoTfC/lIaUUpRoFUsyaBZHQK2VHx4ptrN1fZQoaAZoCWgPQwgcz2dAvRngv5SGlFKUaBVLMmgWR0CtlPwJPZZkdX2UKGgGaAloD0MImUnUCz5N7L+UhpRSlGgVSzJoFkdArZTbYVZcLXV9lChoBmgJaA9DCOgU5Gcj19m/lIaUUpRoFUsyaBZHQK2UtMQEpy91fZQoaAZoCWgPQwi3e7lPjgLwv5SGlFKUaBVLMmgWR0CtlyzKkl/pdX2UKGgGaAloD0MIxa7t7Zbk8L+UhpRSlGgVSzJoFkdArZcJiobXH3V9lChoBmgJaA9DCJGA0eXNYee/lIaUUpRoFUsyaBZHQK2W5zLfUF11fZQoaAZoCWgPQwjjNa/qrJbgv5SGlFKUaBVLMmgWR0CtlsYbS7XhdX2UKGgGaAloD0MIQx1WuOUj17+UhpRSlGgVSzJoFkdArZajmOlwcnV9lChoBmgJaA9DCLKbGf1oOPO/lIaUUpRoFUsyaBZHQK2WgKdhAnl1fZQoaAZoCWgPQwhCBYcXRCTrv5SGlFKUaBVLMmgWR0Ctll/bblBAdX2UKGgGaAloD0MI8djPYimS37+UhpRSlGgVSzJoFkdArZY5GnXNDHV9lChoBmgJaA9DCHLe/8cJE+2/lIaUUpRoFUsyaBZHQK2Yqw5eZ5R1fZQoaAZoCWgPQwifOetTjsnav5SGlFKUaBVLMmgWR0CtmIfYjB2wdX2UKGgGaAloD0MI81gzMsjd8L+UhpRSlGgVSzJoFkdArZhlUuL743V9lChoBmgJaA9DCCttcY3PJPq/lIaUUpRoFUsyaBZHQK2YREMspXp1fZQoaAZoCWgPQwiuDRXj/E3nv5SGlFKUaBVLMmgWR0CtmCHZsbeedX2UKGgGaAloD0MIwF/MlqyK7b+UhpRSlGgVSzJoFkdArZf+65Gz8nV9lChoBmgJaA9DCKbSTzi7te2/lIaUUpRoFUsyaBZHQK2X3k4m1IB1fZQoaAZoCWgPQwgGaFvNOqP2v5SGlFKUaBVLMmgWR0Ctl7fNzKcNdX2UKGgGaAloD0MIkpOJWwUx3b+UhpRSlGgVSzJoFkdArZo0ZJkGzXV9lChoBmgJaA9DCJNTO8PUlue/lIaUUpRoFUsyaBZHQK2aERL9MsZ1fZQoaAZoCWgPQwgAHHv2XKbcv5SGlFKUaBVLMmgWR0Ctme6nrIHUdX2UKGgGaAloD0MI4Ln3cMnx6r+UhpRSlGgVSzJoFkdArZnNnuiN83V9lChoBmgJaA9DCBXHgVfLHfC/lIaUUpRoFUsyaBZHQK2ZqyrxRVJ1fZQoaAZoCWgPQwikVS3pKIfqv5SGlFKUaBVLMmgWR0CtmYgqd6LPdX2UKGgGaAloD0MIdT3RdeGH77+UhpRSlGgVSzJoFkdArZlng75mAnV9lChoBmgJaA9DCE+Srpl8M/e/lIaUUpRoFUsyaBZHQK2ZQPIXCTF1fZQoaAZoCWgPQwithO6SOCvzv5SGlFKUaBVLMmgWR0Ctm6jgydnTdX2UKGgGaAloD0MIQNtq1hlf4r+UhpRSlGgVSzJoFkdArZuFhgE2YXV9lChoBmgJaA9DCIXsvI3Nju6/lIaUUpRoFUsyaBZHQK2bYwC8vmJ1fZQoaAZoCWgPQwhxHeOKi6Pvv5SGlFKUaBVLMmgWR0Ctm0HktEofdX2UKGgGaAloD0MIA+0OKQaI8b+UhpRSlGgVSzJoFkdArZsfhwVCX3V9lChoBmgJaA9DCLwC0ZMyqee/lIaUUpRoFUsyaBZHQK2a/JDE3sJ1fZQoaAZoCWgPQwhWRbjJqLLvv5SGlFKUaBVLMmgWR0Ctmtv4dp7DdX2UKGgGaAloD0MIjKIHPgYr3b+UhpRSlGgVSzJoFkdArZq1ehPCVXV9lChoBmgJaA9DCCKrWz0nffG/lIaUUpRoFUsyaBZHQK2dMNsFdLR1fZQoaAZoCWgPQwhXzXNEvsvyv5SGlFKUaBVLMmgWR0CtnQ2H1vl2dX2UKGgGaAloD0MI8bvplh1i77+UhpRSlGgVSzJoFkdArZzq+8Gs3nV9lChoBmgJaA9DCPse9dcrLOK/lIaUUpRoFUsyaBZHQK2cyd8zAN51fZQoaAZoCWgPQwhSmPc404Ttv5SGlFKUaBVLMmgWR0CtnKd87ZFodX2UKGgGaAloD0MIkBFQ4QhS+b+UhpRSlGgVSzJoFkdArZyEnAqNInV9lChoBmgJaA9DCK6f/rPmx+W/lIaUUpRoFUsyaBZHQK2cY9IPK+11fZQoaAZoCWgPQwgQJVryeBrwv5SGlFKUaBVLMmgWR0CtnD1E3KjjdX2UKGgGaAloD0MIeCefHtsy8L+UhpRSlGgVSzJoFkdArZ6CWu5jIHV9lChoBmgJaA9DCMrd5/hoceK/lIaUUpRoFUsyaBZHQK2eXwz+FUR1fZQoaAZoCWgPQwhaSwFp/8Pwv5SGlFKUaBVLMmgWR0CtnjyA6MisdX2UKGgGaAloD0MIm3RbIhec7r+UhpRSlGgVSzJoFkdArZ4bVDrquHV9lChoBmgJaA9DCGxdaoR+ZvK/lIaUUpRoFUsyaBZHQK2d+P+XJHR1fZQoaAZoCWgPQwjEeM2rOivgv5SGlFKUaBVLMmgWR0CtndXwb2lEdX2UKGgGaAloD0MI2PM1y2Wj2r+UhpRSlGgVSzJoFkdArZ21KmKqGXV9lChoBmgJaA9DCFsjgnFwafG/lIaUUpRoFUsyaBZHQK2djpu/Dcd1ZS4="
|
83 |
},
|
84 |
"ep_success_buffer": {
|
85 |
":type:": "<class 'collections.deque'>",
|
86 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
87 |
},
|
88 |
+
"_n_updates": 31250,
|
89 |
+
"n_steps": 8,
|
90 |
"gamma": 0.99,
|
91 |
+
"gae_lambda": 0.9,
|
92 |
"ent_coef": 0.0,
|
93 |
+
"vf_coef": 0.4,
|
94 |
"max_grad_norm": 0.5,
|
95 |
"normalize_advantage": false
|
96 |
}
|
a2c-PandaReachDense-v2/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:82891003eb5bb54f728f16a807d17e050e4622f11054f9eb1fc9e80c5cc7817f
|
3 |
+
size 45374
|
a2c-PandaReachDense-v2/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:edd16a3e8fe292b21277dd5124f6dd94691f01906a66a898d098bdcf4aeaff70
|
3 |
+
size 46206
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the feature extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f2171516ee0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f2171518a40>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 3000000, "_total_timesteps": 3000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1682387135.1029332, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVlQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMYy9ob21lL2J5cm9uL21pbmljb25kYTMvZW52cy9tbC1hZ2VudHMvbGliL3B5dGhvbjMuOS9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5RoDHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB59lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA3MfxPlqX8zxXhgw/3MfxPlqX8zxXhgw/3MfxPlqX8zxXhgw/3MfxPlqX8zxXhgw/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAn6OYvyTLwD+bz/C+Mj18Prk5xD+WXU+/iMiMvwktp7+KU8a/Rym0vzhTVD87MKm/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADcx/E+WpfzPFeGDD/Gttw7/MbVuCSYMDzcx/E+WpfzPFeGDD/Gttw7/MbVuCSYMDzcx/E+WpfzPFeGDD/Gttw7/MbVuCSYMDzcx/E+WpfzPFeGDD/Gttw7/MbVuCSYMDyUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[0.47222793 0.02973526 0.54892486]\n [0.47222793 0.02973526 0.54892486]\n [0.47222793 0.02973526 0.54892486]\n [0.47222793 0.02973526 0.54892486]]", "desired_goal": "[[-1.1924933 1.5061994 -0.4703339 ]\n [ 0.24632719 1.5330116 -0.81002176]\n [-1.0998697 -1.3060619 -1.5494244 ]\n [-1.4075097 0.8293948 -1.3217844 ]]", "observation": "[[ 4.7222793e-01 2.9735256e-02 5.4892486e-01 6.7356555e-03\n -1.0193695e-04 1.0778461e-02]\n [ 4.7222793e-01 2.9735256e-02 5.4892486e-01 6.7356555e-03\n -1.0193695e-04 1.0778461e-02]\n [ 4.7222793e-01 2.9735256e-02 5.4892486e-01 6.7356555e-03\n -1.0193695e-04 1.0778461e-02]\n [ 4.7222793e-01 2.9735256e-02 5.4892486e-01 6.7356555e-03\n -1.0193695e-04 1.0778461e-02]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAbTsTPVFA4D1xNqc92WRvPfrcvj2FxYc+93rZPGCIyL2Q53I+pJ6FPHYtFr7kLW4+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.03594534 0.10949767 0.08164681]\n [ 0.05844579 0.09319492 0.26517883]\n [ 0.02654789 -0.09791636 0.23721147]\n [ 0.016311 -0.1466578 0.23259693]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI9iUbD7Y4D8CUhpRSlIwBbJRLMowBdJRHQLtYcA5q/M51fZQoaAZoCWgPQwhlbVM8LkoOwJSGlFKUaBVLMmgWR0C7WFyfQKKHdX2UKGgGaAloD0MItqLNcW5zEMCUhpRSlGgVSzJoFkdAu1hJE3KjjHV9lChoBmgJaA9DCC20c5oFOhLAlIaUUpRoFUsyaBZHQLtYNWAwwkB1fZQoaAZoCWgPQwheZAJ+jXQSwJSGlFKUaBVLMmgWR0C7WNiGJvYOdX2UKGgGaAloD0MIKa+V0F2SEcCUhpRSlGgVSzJoFkdAu1jE8SwnpnV9lChoBmgJaA9DCOQvLeqTnArAlIaUUpRoFUsyaBZHQLtYsWXkYGd1fZQoaAZoCWgPQwiqDONuEE0SwJSGlFKUaBVLMmgWR0C7WJ3P3SKFdX2UKGgGaAloD0MI2Ls/3qt2EsCUhpRSlGgVSzJoFkdAu1lOCxu89XV9lChoBmgJaA9DCEPjiSDOIwTAlIaUUpRoFUsyaBZHQLtZOoTPBzp1fZQoaAZoCWgPQwgYXHNH/4sQwJSGlFKUaBVLMmgWR0C7WSb9/BnBdX2UKGgGaAloD0MI2epySkBsDsCUhpRSlGgVSzJoFkdAu1kTRqoIfXV9lChoBmgJaA9DCGU08nnFEwnAlIaUUpRoFUsyaBZHQLtZwLR8c+91fZQoaAZoCWgPQwgVkPY/wEoRwJSGlFKUaBVLMmgWR0C7Wa0eU6gedX2UKGgGaAloD0MICJRNucJbFsCUhpRSlGgVSzJoFkdAu1mZmh/RV3V9lChoBmgJaA9DCKQzMPKyRg/AlIaUUpRoFUsyaBZHQLtZhfDUExJ1fZQoaAZoCWgPQwgFUfcBSO0RwJSGlFKUaBVLMmgWR0C7WjKXKKYRdX2UKGgGaAloD0MIKnKIuDlFFcCUhpRSlGgVSzJoFkdAu1ofCQ9zO3V9lChoBmgJaA9DCPWdX5SgTxHAlIaUUpRoFUsyaBZHQLtaC3y7PIJ1fZQoaAZoCWgPQwjHuyNjtUkYwJSGlFKUaBVLMmgWR0C7WffFBIFvdX2UKGgGaAloD0MIWAG+27zxEMCUhpRSlGgVSzJoFkdAu1qex6fJ3nV9lChoBmgJaA9DCLBXWHA/cBLAlIaUUpRoFUsyaBZHQLtaiy9mHxl1fZQoaAZoCWgPQwiXqUnwhhQJwJSGlFKUaBVLMmgWR0C7Wne6y0KJdX2UKGgGaAloD0MInOCbps+ODsCUhpRSlGgVSzJoFkdAu1pkD+zdDnV9lChoBmgJaA9DCJ29M9qqhBXAlIaUUpRoFUsyaBZHQLtbDSHdoFp1fZQoaAZoCWgPQwhwJNBgU2cYwJSGlFKUaBVLMmgWR0C7WvmOyVv/dX2UKGgGaAloD0MIfNEeL6RTEsCUhpRSlGgVSzJoFkdAu1rmBTXJ5nV9lChoBmgJaA9DCBXhJqPK0BDAlIaUUpRoFUsyaBZHQLta0lMRHwx1fZQoaAZoCWgPQwh8KxIT1HAJwJSGlFKUaBVLMmgWR0C7W4RaC+URdX2UKGgGaAloD0MIFJhO6zY4EsCUhpRSlGgVSzJoFkdAu1tw3irDInV9lChoBmgJaA9DCETdByC1aRTAlIaUUpRoFUsyaBZHQLtbXVbzK9x1fZQoaAZoCWgPQwhvRWKCGs4XwJSGlFKUaBVLMmgWR0C7W0nIIWxhdX2UKGgGaAloD0MI+u/Ba5c2EMCUhpRSlGgVSzJoFkdAu1vsW43FUHV9lChoBmgJaA9DCLwEpz6QfBPAlIaUUpRoFUsyaBZHQLtb2MQ2/BZ1fZQoaAZoCWgPQwhKCiyAKVMRwJSGlFKUaBVLMmgWR0C7W8U4BFNMdX2UKGgGaAloD0MIA5fHmpHhFMCUhpRSlGgVSzJoFkdAu1uxfG+9J3V9lChoBmgJaA9DCH1BCwkY7RDAlIaUUpRoFUsyaBZHQLtcVfXPJJZ1fZQoaAZoCWgPQwgNbJVgcegWwJSGlFKUaBVLMmgWR0C7XEJpFkQPdX2UKGgGaAloD0MI+gj84eefGMCUhpRSlGgVSzJoFkdAu1wu5AhStXV9lChoBmgJaA9DCBjt8UI6fBDAlIaUUpRoFUsyaBZHQLtcGy4Wk8B1fZQoaAZoCWgPQwjYCwVsB8MJwJSGlFKUaBVLMmgWR0C7XMNmxt52dX2UKGgGaAloD0MI0GBT51GhEcCUhpRSlGgVSzJoFkdAu1yv0h/y5XV9lChoBmgJaA9DCMg/M4gPjBPAlIaUUpRoFUsyaBZHQLtcnESuhbp1fZQoaAZoCWgPQwhkQPZ698cMwJSGlFKUaBVLMmgWR0C7XIiaqjrSdX2UKGgGaAloD0MIKxIT1PAtEcCUhpRSlGgVSzJoFkdAu100JkXk53V9lChoBmgJaA9DCM8sCVBTyxLAlIaUUpRoFUsyaBZHQLtdIJNTLnt1fZQoaAZoCWgPQwh8mpMXmYAOwJSGlFKUaBVLMmgWR0C7XQ0GeMAFdX2UKGgGaAloD0MIvHX+7bKfEMCUhpRSlGgVSzJoFkdAu1z5ZU1hs3V9lChoBmgJaA9DCKKZJ9cU6A3AlIaUUpRoFUsyaBZHQLtdoPTodMl1fZQoaAZoCWgPQwiuf9dnzqoRwJSGlFKUaBVLMmgWR0C7XY1lK9PDdX2UKGgGaAloD0MIV+vE5Xh1E8CUhpRSlGgVSzJoFkdAu11508vEj3V9lChoBmgJaA9DCJWAmIQLKRbAlIaUUpRoFUsyaBZHQLtdZiDdxhl1fZQoaAZoCWgPQwipv15hwV0PwJSGlFKUaBVLMmgWR0C7XguDSPU8dX2UKGgGaAloD0MI8KMa9ntCDcCUhpRSlGgVSzJoFkdAu1337hvR7nV9lChoBmgJaA9DCK+T+rK0wxnAlIaUUpRoFUsyaBZHQLtd5GucME11fZQoaAZoCWgPQwie6pCb4WYTwJSGlFKUaBVLMmgWR0C7XdC00FbFdX2UKGgGaAloD0MI+yDLgonPE8CUhpRSlGgVSzJoFkdAu1574nF5wHV9lChoBmgJaA9DCMfYCS/BGRfAlIaUUpRoFUsyaBZHQLteaFnIyTJ1fZQoaAZoCWgPQwgrNBDLZo4HwJSGlFKUaBVLMmgWR0C7XlTWbwz+dX2UKGgGaAloD0MIzk9xHHhlEMCUhpRSlGgVSzJoFkdAu15BJiAlOXV9lChoBmgJaA9DCFBz8iITABDAlIaUUpRoFUsyaBZHQLte6JYkmhN1fZQoaAZoCWgPQwiUg9kEGBYSwJSGlFKUaBVLMmgWR0C7XtT850bMdX2UKGgGaAloD0MI6IU7F0bqF8CUhpRSlGgVSzJoFkdAu17BbcGke3V9lChoBmgJaA9DCHxD4bN1ABTAlIaUUpRoFUsyaBZHQLterbm2b5N1fZQoaAZoCWgPQwit3AvMCrURwJSGlFKUaBVLMmgWR0C7X1KHXVbzdX2UKGgGaAloD0MIyY6NQLwuDsCUhpRSlGgVSzJoFkdAu18++GoJiXV9lChoBmgJaA9DCNz0Zz9SRArAlIaUUpRoFUsyaBZHQLtfK2qDK5l1fZQoaAZoCWgPQwjVIw1uaysQwJSGlFKUaBVLMmgWR0C7XxfLX+VDdX2UKGgGaAloD0MIntMs0O7AFMCUhpRSlGgVSzJoFkdAu1+/TXrdFnV9lChoBmgJaA9DCJRNucK7rBLAlIaUUpRoFUsyaBZHQLtfq7rs0Hh1fZQoaAZoCWgPQwhq9kArMIQPwJSGlFKUaBVLMmgWR0C7X5gyVObidX2UKGgGaAloD0MIQ3IycauAEcCUhpRSlGgVSzJoFkdAu1+EhX8wYnV9lChoBmgJaA9DCFwFMdC1HxfAlIaUUpRoFUsyaBZHQLtgJMeOn2t1fZQoaAZoCWgPQwijlBCsqqcVwJSGlFKUaBVLMmgWR0C7YBEvGp++dX2UKGgGaAloD0MI8ppXdVYrEMCUhpRSlGgVSzJoFkdAu1/9n/T9bXV9lChoBmgJaA9DCHe/CvDd9hHAlIaUUpRoFUsyaBZHQLtf6fEXLvF1fZQoaAZoCWgPQwhnRGlv8AUOwJSGlFKUaBVLMmgWR0C7YI41gpjMdX2UKGgGaAloD0MInInpQqwuEsCUhpRSlGgVSzJoFkdAu2B6nBLwnnV9lChoBmgJaA9DCLXeb7TjVhDAlIaUUpRoFUsyaBZHQLtgZw5/9YR1fZQoaAZoCWgPQwjHE0Gch+MQwJSGlFKUaBVLMmgWR0C7YFNmcvugdX2UKGgGaAloD0MIxOxl22nLCMCUhpRSlGgVSzJoFkdAu2D6lLvkR3V9lChoBmgJaA9DCE+UhETaJhTAlIaUUpRoFUsyaBZHQLtg5w6ySmt1fZQoaAZoCWgPQwjo3sMlxz0PwJSGlFKUaBVLMmgWR0C7YNN/e+EidX2UKGgGaAloD0MIwHtHjQnREMCUhpRSlGgVSzJoFkdAu2C/zCk43nV9lChoBmgJaA9DCFG9NbBVwg/AlIaUUpRoFUsyaBZHQLthY+jdpIt1fZQoaAZoCWgPQwjzIagavXoXwJSGlFKUaBVLMmgWR0C7YVBcE/0NdX2UKGgGaAloD0MIH5+QnbcxFMCUhpRSlGgVSzJoFkdAu2E8zxgAqHV9lChoBmgJaA9DCHv3x3vVGhHAlIaUUpRoFUsyaBZHQLthKRjBl+V1fZQoaAZoCWgPQwiTUWUYd8MRwJSGlFKUaBVLMmgWR0C7Ydyp3os7dX2UKGgGaAloD0MI2J3uPPHsFMCUhpRSlGgVSzJoFkdAu2HJGmUGFHV9lChoBmgJaA9DCBPU8C2s6xDAlIaUUpRoFUsyaBZHQLthtYzzmOl1fZQoaAZoCWgPQwgjEoWWdY8TwJSGlFKUaBVLMmgWR0C7YaHcclw+dX2UKGgGaAloD0MIy6FFtvNdD8CUhpRSlGgVSzJoFkdAu2JRMQEpzHV9lChoBmgJaA9DCJYKKqp+VRDAlIaUUpRoFUsyaBZHQLtiPaRp1zR1fZQoaAZoCWgPQwiQhlPm5nsLwJSGlFKUaBVLMmgWR0C7YioaP0ZndX2UKGgGaAloD0MIHTo978YCDcCUhpRSlGgVSzJoFkdAu2IWeAd4mnV9lChoBmgJaA9DCCFZwARu/QnAlIaUUpRoFUsyaBZHQLtiv1+iJwd1fZQoaAZoCWgPQwiuY1xxcTQQwJSGlFKUaBVLMmgWR0C7YqvLxI8RdX2UKGgGaAloD0MI1LZhFASPEMCUhpRSlGgVSzJoFkdAu2KYRNATqXV9lChoBmgJaA9DCFLxf0dUWBHAlIaUUpRoFUsyaBZHQLtihK2a2F51ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 150000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.15.90.1-microsoft-standard-WSL2-x86_64-with-glibc2.35 #1 SMP Fri Jan 27 02:56:13 UTC 2023", "Python": "3.9.16", "Stable-Baselines3": "1.5.0", "PyTorch": "1.12.1.post201", "GPU Enabled": "True", "Numpy": "1.24.3", "Gym": "0.21.0"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the feature extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f83d03c3310>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f83d03c1980>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 8, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1682470274.0131578, "learning_rate": 0.00096, "tensorboard_log": "runs/PandaReachDense-v2", "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVlQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMYy9ob21lL2J5cm9uL21pbmljb25kYTMvZW52cy9tbC1hZ2VudHMvbGliL3B5dGhvbjMuOS9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5RoDHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB59lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9PdRBNVR1phZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVewIAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolmAAAAAAAAAAlVDZPqmuTbpDcQo/lVDZPqmuTbpDcQo/lVDZPqmuTbpDcQo/lVDZPqmuTbpDcQo/lVDZPqmuTbpDcQo/lVDZPqmuTbpDcQo/lVDZPqmuTbpDcQo/lVDZPqmuTbpDcQo/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksISwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcolmAAAAAAAAAADKONPaPWdj8gwsq/DlmfP1lKc78CTdq/2OrAv7EZsr/GwRc9di7Uv3LMsT8OTaA/YCVFvg1Epz+KPku/+sHGPh+9Lj/kSqK/FVA8v+3emT9BabS/jrWUv5ALSb/lY5w/lGgOSwhLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWwAAAAAAAAACVUNk+qa5NukNxCj93Z7w90I2duCkjlj2VUNk+qa5NukNxCj93Z7w90I2duCkjlj2VUNk+qa5NukNxCj93Z7w90I2duCkjlj2VUNk+qa5NukNxCj93Z7w90I2duCkjlj2VUNk+qa5NukNxCj93Z7w90I2duCkjlj2VUNk+qa5NukNxCj93Z7w90I2duCkjlj2VUNk+qa5NukNxCj93Z7w90I2duCkjlj2VUNk+qa5NukNxCj93Z7w90I2duCkjlj2UaA5LCEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.42444292 -0.00078462 0.54079074]\n [ 0.42444292 -0.00078462 0.54079074]\n [ 0.42444292 -0.00078462 0.54079074]\n [ 0.42444292 -0.00078462 0.54079074]\n [ 0.42444292 -0.00078462 0.54079074]\n [ 0.42444292 -0.00078462 0.54079074]\n [ 0.42444292 -0.00078462 0.54079074]\n [ 0.42444292 -0.00078462 0.54079074]]", "desired_goal": "[[ 0.06915864 0.9642126 -1.5840492 ]\n [ 1.2449052 -0.9503532 -1.7054751 ]\n [-1.5071669 -1.391409 0.03705003]\n [-1.6576679 1.3890517 1.2523515 ]\n [-0.19252539 1.3067642 -0.793923 ]\n [ 0.38819867 0.68257326 -1.2679105 ]\n [-0.73559695 1.2021157 -1.4094621 ]\n [-1.1617906 -0.7853327 1.2217985 ]]", "observation": "[[ 4.2444292e-01 -7.8461558e-04 5.4079074e-01 9.1994219e-02\n -7.5127580e-05 7.3309250e-02]\n [ 4.2444292e-01 -7.8461558e-04 5.4079074e-01 9.1994219e-02\n -7.5127580e-05 7.3309250e-02]\n [ 4.2444292e-01 -7.8461558e-04 5.4079074e-01 9.1994219e-02\n -7.5127580e-05 7.3309250e-02]\n [ 4.2444292e-01 -7.8461558e-04 5.4079074e-01 9.1994219e-02\n -7.5127580e-05 7.3309250e-02]\n [ 4.2444292e-01 -7.8461558e-04 5.4079074e-01 9.1994219e-02\n -7.5127580e-05 7.3309250e-02]\n [ 4.2444292e-01 -7.8461558e-04 5.4079074e-01 9.1994219e-02\n -7.5127580e-05 7.3309250e-02]\n [ 4.2444292e-01 -7.8461558e-04 5.4079074e-01 9.1994219e-02\n -7.5127580e-05 7.3309250e-02]\n [ 4.2444292e-01 -7.8461558e-04 5.4079074e-01 9.1994219e-02\n -7.5127580e-05 7.3309250e-02]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVewAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYIAAAAAAAAAAEBAQEBAQEBlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlC4="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVewIAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolmAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksISwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcolmAAAAAAAAAA29S6vTj+3L0UZkc+x0msPfmFnbz4EDA+QmnEvbLZVT0uP3M+8xT4PQF1BD5NUAQ+Pt//vevLYb3sRHQ+4rzRvSMp5z1XcnI9vJy4OrA8tD2empA+ydPHvT6OBT76rWY+lGgOSwhLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWwAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LCEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.0912263 -0.10790676 0.19472533]\n [ 0.08412509 -0.01922892 0.17193973]\n [-0.09590389 0.05220956 0.2375457 ]\n [ 0.12113371 0.12935258 0.12921257]\n [-0.12493752 -0.05512611 0.23854417]\n [-0.10241105 0.11287143 0.05919107]\n [ 0.00140848 0.08800638 0.28242964]\n [-0.09757192 0.13042542 0.22527304]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIEwt8Rbde5L+UhpRSlIwBbJRLMowBdJRHQK2L7UiILw51fZQoaAZoCWgPQwgWLxaGyOnvv5SGlFKUaBVLMmgWR0Cti8pAUtZndX2UKGgGaAloD0MIS3LAribP4b+UhpRSlGgVSzJoFkdArYupmNBF/nV9lChoBmgJaA9DCOEkzR/T2ue/lIaUUpRoFUsyaBZHQK2LgueSSvF1fZQoaAZoCWgPQwivljszwXDiv5SGlFKUaBVLMmgWR0CtjhJr1uiwdX2UKGgGaAloD0MI+62dKAmJ5b+UhpRSlGgVSzJoFkdArY3vHHWBjHV9lChoBmgJaA9DCOHtQQjIF+C/lIaUUpRoFUsyaBZHQK2NzLDAJsx1fZQoaAZoCWgPQwg2VmKelTTov5SGlFKUaBVLMmgWR0Ctjau2AoXsdX2UKGgGaAloD0MIe4hGdxA747+UhpRSlGgVSzJoFkdArY2JUFSsKnV9lChoBmgJaA9DCB+DFadaC+y/lIaUUpRoFUsyaBZHQK2NZmEoOQR1fZQoaAZoCWgPQwiRYKqZtdTyv5SGlFKUaBVLMmgWR0CtjUXYcvM9dX2UKGgGaAloD0MIJxdjYB1H47+UhpRSlGgVSzJoFkdArY0fXGwRoXV9lChoBmgJaA9DCNZvJqYLsdW/lIaUUpRoFUsyaBZHQK2PjdJJ5FB1fZQoaAZoCWgPQwh5sMVun1Xyv5SGlFKUaBVLMmgWR0Ctj2qZlWfcdX2UKGgGaAloD0MIhgFLrmJx67+UhpRSlGgVSzJoFkdArY9IQe3hGnV9lChoBmgJaA9DCM3NN6J71ua/lIaUUpRoFUsyaBZHQK2PJyLhrFh1fZQoaAZoCWgPQwg0EMtmDkniv5SGlFKUaBVLMmgWR0CtjwSgPEsKdX2UKGgGaAloD0MI2uVbH9ab5r+UhpRSlGgVSzJoFkdArY7hpDeCTXV9lChoBmgJaA9DCGMJa2PshPq/lIaUUpRoFUsyaBZHQK2OwN4qwyJ1fZQoaAZoCWgPQwjVdhN803Twv5SGlFKUaBVLMmgWR0CtjppCjUNKdX2UKGgGaAloD0MIxw4qcR3j7L+UhpRSlGgVSzJoFkdArZEOEGqxT3V9lChoBmgJaA9DCA8r3PKRFOe/lIaUUpRoFUsyaBZHQK2Q6tPpIMB1fZQoaAZoCWgPQwg4LuOmBhriv5SGlFKUaBVLMmgWR0CtkMhHLA58dX2UKGgGaAloD0MIxxFr8SmA5L+UhpRSlGgVSzJoFkdArZCnL5h0AHV9lChoBmgJaA9DCHLg1XJnJuK/lIaUUpRoFUsyaBZHQK2QhJyQxN91fZQoaAZoCWgPQwg2lNqLaDviv5SGlFKUaBVLMmgWR0CtkGGseXAudX2UKGgGaAloD0MIguUIGciz87+UhpRSlGgVSzJoFkdArZBBHAh0Q3V9lChoBmgJaA9DCPHydK4oJfe/lIaUUpRoFUsyaBZHQK2QGoOx0Mh1fZQoaAZoCWgPQwiYNEbrqOrxv5SGlFKUaBVLMmgWR0Ctko4UFjd6dX2UKGgGaAloD0MI4dQHkneO47+UhpRSlGgVSzJoFkdArZJqsbNr03V9lChoBmgJaA9DCDLJyFnY0+G/lIaUUpRoFUsyaBZHQK2SSDxLCep1fZQoaAZoCWgPQwhGelG7XwXzv5SGlFKUaBVLMmgWR0CtkicbrC3xdX2UKGgGaAloD0MIj6flB67y7b+UhpRSlGgVSzJoFkdArZIEkyDZlHV9lChoBmgJaA9DCCV0l8RZkeC/lIaUUpRoFUsyaBZHQK2R4ZNwiq11fZQoaAZoCWgPQwj6Cz1i9NzXv5SGlFKUaBVLMmgWR0CtkcDJ+2E1dX2UKGgGaAloD0MIS8lyEkrf77+UhpRSlGgVSzJoFkdArZGaKziS73V9lChoBmgJaA9DCES+S6lLBvK/lIaUUpRoFUsyaBZHQK2UHLcsUZh1fZQoaAZoCWgPQwgqqn6l8+Hyv5SGlFKUaBVLMmgWR0Ctk/mWUr08dX2UKGgGaAloD0MIzR5oBYYs9b+UhpRSlGgVSzJoFkdArZPXJHRTj3V9lChoBmgJaA9DCNj0oKAUreq/lIaUUpRoFUsyaBZHQK2TtjsD4g11fZQoaAZoCWgPQwhKDAIrh5bnv5SGlFKUaBVLMmgWR0Ctk5PIGQjmdX2UKGgGaAloD0MIe0/ltKdk4b+UhpRSlGgVSzJoFkdArZNxDE3sHHV9lChoBmgJaA9DCPz+zYsTX+S/lIaUUpRoFUsyaBZHQK2TUIFeOXF1fZQoaAZoCWgPQwj4a7JGPcT2v5SGlFKUaBVLMmgWR0CtkynryDqXdX2UKGgGaAloD0MIONibGJKT8r+UhpRSlGgVSzJoFkdArZWoVoHs1XV9lChoBmgJaA9DCKsEi8OZ3++/lIaUUpRoFUsyaBZHQK2VhSXMQmN1fZQoaAZoCWgPQwhRFr6+1iXiv5SGlFKUaBVLMmgWR0CtlWKx9oexdX2UKGgGaAloD0MIZVQZxt1g8b+UhpRSlGgVSzJoFkdArZVBiuuA7XV9lChoBmgJaA9DCKpGrwYoTfC/lIaUUpRoFUsyaBZHQK2VHx4ptrN1fZQoaAZoCWgPQwgcz2dAvRngv5SGlFKUaBVLMmgWR0CtlPwJPZZkdX2UKGgGaAloD0MImUnUCz5N7L+UhpRSlGgVSzJoFkdArZTbYVZcLXV9lChoBmgJaA9DCOgU5Gcj19m/lIaUUpRoFUsyaBZHQK2UtMQEpy91fZQoaAZoCWgPQwi3e7lPjgLwv5SGlFKUaBVLMmgWR0CtlyzKkl/pdX2UKGgGaAloD0MIxa7t7Zbk8L+UhpRSlGgVSzJoFkdArZcJiobXH3V9lChoBmgJaA9DCJGA0eXNYee/lIaUUpRoFUsyaBZHQK2W5zLfUF11fZQoaAZoCWgPQwjjNa/qrJbgv5SGlFKUaBVLMmgWR0CtlsYbS7XhdX2UKGgGaAloD0MIQx1WuOUj17+UhpRSlGgVSzJoFkdArZajmOlwcnV9lChoBmgJaA9DCLKbGf1oOPO/lIaUUpRoFUsyaBZHQK2WgKdhAnl1fZQoaAZoCWgPQwhCBYcXRCTrv5SGlFKUaBVLMmgWR0Ctll/bblBAdX2UKGgGaAloD0MI8djPYimS37+UhpRSlGgVSzJoFkdArZY5GnXNDHV9lChoBmgJaA9DCHLe/8cJE+2/lIaUUpRoFUsyaBZHQK2Yqw5eZ5R1fZQoaAZoCWgPQwifOetTjsnav5SGlFKUaBVLMmgWR0CtmIfYjB2wdX2UKGgGaAloD0MI81gzMsjd8L+UhpRSlGgVSzJoFkdArZhlUuL743V9lChoBmgJaA9DCCttcY3PJPq/lIaUUpRoFUsyaBZHQK2YREMspXp1fZQoaAZoCWgPQwiuDRXj/E3nv5SGlFKUaBVLMmgWR0CtmCHZsbeedX2UKGgGaAloD0MIwF/MlqyK7b+UhpRSlGgVSzJoFkdArZf+65Gz8nV9lChoBmgJaA9DCKbSTzi7te2/lIaUUpRoFUsyaBZHQK2X3k4m1IB1fZQoaAZoCWgPQwgGaFvNOqP2v5SGlFKUaBVLMmgWR0Ctl7fNzKcNdX2UKGgGaAloD0MIkpOJWwUx3b+UhpRSlGgVSzJoFkdArZo0ZJkGzXV9lChoBmgJaA9DCJNTO8PUlue/lIaUUpRoFUsyaBZHQK2aERL9MsZ1fZQoaAZoCWgPQwgAHHv2XKbcv5SGlFKUaBVLMmgWR0Ctme6nrIHUdX2UKGgGaAloD0MI4Ln3cMnx6r+UhpRSlGgVSzJoFkdArZnNnuiN83V9lChoBmgJaA9DCBXHgVfLHfC/lIaUUpRoFUsyaBZHQK2ZqyrxRVJ1fZQoaAZoCWgPQwikVS3pKIfqv5SGlFKUaBVLMmgWR0CtmYgqd6LPdX2UKGgGaAloD0MIdT3RdeGH77+UhpRSlGgVSzJoFkdArZlng75mAnV9lChoBmgJaA9DCE+Srpl8M/e/lIaUUpRoFUsyaBZHQK2ZQPIXCTF1fZQoaAZoCWgPQwithO6SOCvzv5SGlFKUaBVLMmgWR0Ctm6jgydnTdX2UKGgGaAloD0MIQNtq1hlf4r+UhpRSlGgVSzJoFkdArZuFhgE2YXV9lChoBmgJaA9DCIXsvI3Nju6/lIaUUpRoFUsyaBZHQK2bYwC8vmJ1fZQoaAZoCWgPQwhxHeOKi6Pvv5SGlFKUaBVLMmgWR0Ctm0HktEofdX2UKGgGaAloD0MIA+0OKQaI8b+UhpRSlGgVSzJoFkdArZsfhwVCX3V9lChoBmgJaA9DCLwC0ZMyqee/lIaUUpRoFUsyaBZHQK2a/JDE3sJ1fZQoaAZoCWgPQwhWRbjJqLLvv5SGlFKUaBVLMmgWR0Ctmtv4dp7DdX2UKGgGaAloD0MIjKIHPgYr3b+UhpRSlGgVSzJoFkdArZq1ehPCVXV9lChoBmgJaA9DCCKrWz0nffG/lIaUUpRoFUsyaBZHQK2dMNsFdLR1fZQoaAZoCWgPQwhXzXNEvsvyv5SGlFKUaBVLMmgWR0CtnQ2H1vl2dX2UKGgGaAloD0MI8bvplh1i77+UhpRSlGgVSzJoFkdArZzq+8Gs3nV9lChoBmgJaA9DCPse9dcrLOK/lIaUUpRoFUsyaBZHQK2cyd8zAN51fZQoaAZoCWgPQwhSmPc404Ttv5SGlFKUaBVLMmgWR0CtnKd87ZFodX2UKGgGaAloD0MIkBFQ4QhS+b+UhpRSlGgVSzJoFkdArZyEnAqNInV9lChoBmgJaA9DCK6f/rPmx+W/lIaUUpRoFUsyaBZHQK2cY9IPK+11fZQoaAZoCWgPQwgQJVryeBrwv5SGlFKUaBVLMmgWR0CtnD1E3KjjdX2UKGgGaAloD0MIeCefHtsy8L+UhpRSlGgVSzJoFkdArZ6CWu5jIHV9lChoBmgJaA9DCMrd5/hoceK/lIaUUpRoFUsyaBZHQK2eXwz+FUR1fZQoaAZoCWgPQwhaSwFp/8Pwv5SGlFKUaBVLMmgWR0CtnjyA6MisdX2UKGgGaAloD0MIm3RbIhec7r+UhpRSlGgVSzJoFkdArZ4bVDrquHV9lChoBmgJaA9DCGxdaoR+ZvK/lIaUUpRoFUsyaBZHQK2d+P+XJHR1fZQoaAZoCWgPQwjEeM2rOivgv5SGlFKUaBVLMmgWR0CtndXwb2lEdX2UKGgGaAloD0MI2PM1y2Wj2r+UhpRSlGgVSzJoFkdArZ21KmKqGXV9lChoBmgJaA9DCFsjgnFwafG/lIaUUpRoFUsyaBZHQK2djpu/Dcd1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 31250, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.15.90.1-microsoft-standard-WSL2-x86_64-with-glibc2.35 #1 SMP Fri Jan 27 02:56:13 UTC 2023", "Python": "3.9.16", "Stable-Baselines3": "1.5.0", "PyTorch": "1.12.1.post201", "GPU Enabled": "True", "Numpy": "1.24.3", "Gym": "0.21.0"}}
|
replay.mp4
CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
|
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward": -
|
|
|
1 |
+
{"mean_reward": -0.7625555438920856, "std_reward": 0.3711276986409525, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-04-26T09:24:32.001486"}
|
vec_normalize.pkl
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 3056
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:984971206ac916396bca4ea36795e6d8e967ba0a7ae24cb695e5333a22fdb7f8
|
3 |
size 3056
|