ItchyB commited on
Commit
aff8c3e
·
1 Parent(s): 3148e86

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - PandaReachDense-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: PandaReachDense-v2
16
+ type: PandaReachDense-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -3.82 +/- 1.04
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **PandaReachDense-v2**
25
+ This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-PandaReachDense-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:31ec833da0253248f1c6be3a5dbfe72d57bf1e70613d72e6523b29dd9fdbea0d
3
+ size 107946
a2c-PandaReachDense-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.8.0
a2c-PandaReachDense-v2/data ADDED
@@ -0,0 +1,95 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x2a0cfdee0>",
8
+ "__abstractmethods__": "frozenset()",
9
+ "_abc_impl": "<_abc_data object at 0x2a0cf0d20>"
10
+ },
11
+ "verbose": 1,
12
+ "policy_kwargs": {
13
+ ":type:": "<class 'dict'>",
14
+ ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
15
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
16
+ "optimizer_kwargs": {
17
+ "alpha": 0.99,
18
+ "eps": 1e-05,
19
+ "weight_decay": 0
20
+ }
21
+ },
22
+ "num_timesteps": 2000000,
23
+ "_total_timesteps": 2000000,
24
+ "_num_timesteps_at_start": 0,
25
+ "seed": null,
26
+ "action_noise": null,
27
+ "start_time": 1682382590514818000,
28
+ "learning_rate": 0.0007,
29
+ "tensorboard_log": null,
30
+ "lr_schedule": {
31
+ ":type:": "<class 'function'>",
32
+ ":serialized:": "gAWVEwMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMcC9vcHQvaG9tZWJyZXcvQ2Fza3Jvb20vbWFtYmFmb3JnZS9iYXNlL2VudnMvdG9yY2gyL2xpYi9weXRob24zLjgvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjHAvb3B0L2hvbWVicmV3L0Nhc2tyb29tL21hbWJhZm9yZ2UvYmFzZS9lbnZzL3RvcmNoMi9saWIvcHl0aG9uMy44L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
33
+ },
34
+ "_last_obs": {
35
+ ":type:": "<class 'collections.OrderedDict'>",
36
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAp3XPPoEHP70uXCs/p3XPPoEHP70uXCs/p3XPPoEHP70uXCs/p3XPPoEHP70uXCs/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAztvNv+TrYj6Y3dY/6vBKP5+7zrx428m/S3lgv/dQCD/AzCk/+37Qv2bv5D7+3oy/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAACndc8+gQc/vS5cKz/vFck7j0ryu1zgjzyndc8+gQc/vS5cKz/vFck7j0ryu1zgjzyndc8+gQc/vS5cKz/vFck7j0ryu1zgjzyndc8+gQc/vS5cKz/vFck7j0ryu1zgjzyUaA5LBEsGhpRoEnSUUpR1Lg==",
37
+ "achieved_goal": "[[ 0.4051945 -0.04663802 0.6693753 ]\n [ 0.4051945 -0.04663802 0.6693753 ]\n [ 0.4051945 -0.04663802 0.6693753 ]\n [ 0.4051945 -0.04663802 0.6693753 ]]",
38
+ "desired_goal": "[[-1.6082704 0.22160298 1.6786375 ]\n [ 0.79273856 -0.02523595 -1.5770102 ]\n [-0.8768508 0.5324854 0.6632805 ]\n [-1.6288751 0.44713897 -1.1005552 ]]",
39
+ "observation": "[[ 0.4051945 -0.04663802 0.6693753 0.00613665 -0.00739414 0.01756304]\n [ 0.4051945 -0.04663802 0.6693753 0.00613665 -0.00739414 0.01756304]\n [ 0.4051945 -0.04663802 0.6693753 0.00613665 -0.00739414 0.01756304]\n [ 0.4051945 -0.04663802 0.6693753 0.00613665 -0.00739414 0.01756304]]"
40
+ },
41
+ "_last_episode_starts": {
42
+ ":type:": "<class 'numpy.ndarray'>",
43
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
44
+ },
45
+ "_last_original_obs": {
46
+ ":type:": "<class 'collections.OrderedDict'>",
47
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPQFqGqxDI0o+6nIdPQFqGqxDI0o+6nIdPQFqGqxDI0o+6nIdPQFqGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAcZJmPU0XHD0N1FM+jcGZPeMtJ7w23lQ+A+nJPR4aG71qW2M+C1uOvVf6r70njRU+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09AWoarEMjSj4AAAAAAAAAgAAAAADqch09AWoarEMjSj4AAAAAAAAAgAAAAADqch09AWoarEMjSj4AAAAAAAAAgAAAAADqch09AWoarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
48
+ "achieved_goal": "[[ 3.8439669e-02 -2.1943560e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1943560e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1943560e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1943560e-12 1.9740014e-01]]",
49
+ "desired_goal": "[[ 0.056292 0.03810816 0.2068636 ]\n [ 0.0750762 -0.01020381 0.20787892]\n [ 0.09858897 -0.0378667 0.2220284 ]\n [-0.06950959 -0.0859267 0.14604627]]",
50
+ "observation": "[[ 3.8439669e-02 -2.1943560e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1943560e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1943560e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1943560e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
51
+ },
52
+ "_episode_num": 0,
53
+ "use_sde": false,
54
+ "sde_sample_freq": -1,
55
+ "_current_progress_remaining": 0.0,
56
+ "_stats_window_size": 100,
57
+ "ep_info_buffer": {
58
+ ":type:": "<class 'collections.deque'>",
59
+ ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIsHH9uz5TCMCUhpRSlIwBbJRLMowBdJRHQJx9q1Bt1p11fZQoaAZoCWgPQwjXicvxCkQHwJSGlFKUaBVLMmgWR0CcfWbkfcN6dX2UKGgGaAloD0MIiudsAaEFEMCUhpRSlGgVSzJoFkdAnH0mRq46O3V9lChoBmgJaA9DCAjMQ6Z8OBDAlIaUUpRoFUsyaBZHQJx86w6hg3N1fZQoaAZoCWgPQwgnpDUGnVALwJSGlFKUaBVLMmgWR0Ccfl+3Ytg8dX2UKGgGaAloD0MIG7luSnltDcCUhpRSlGgVSzJoFkdAnH4bVOKwZHV9lChoBmgJaA9DCFteud42Ew/AlIaUUpRoFUsyaBZHQJx92uB+Wnl1fZQoaAZoCWgPQwifq63YX9YKwJSGlFKUaBVLMmgWR0CcfZ+GGmDUdX2UKGgGaAloD0MIar5KPnYXDcCUhpRSlGgVSzJoFkdAnH8U/jbSJHV9lChoBmgJaA9DCMu8VdehWg7AlIaUUpRoFUsyaBZHQJx+0JqqOtJ1fZQoaAZoCWgPQwjjiLX4FIAQwJSGlFKUaBVLMmgWR0Ccfo/6O5rhdX2UKGgGaAloD0MIJT/iV6xBEMCUhpRSlGgVSzJoFkdAnH5UlNUOu3V9lChoBmgJaA9DCKg1zTtOERLAlIaUUpRoFUsyaBZHQJx/vPyCnP51fZQoaAZoCWgPQwjK3lLOF9sHwJSGlFKUaBVLMmgWR0Ccf3iUPhAGdX2UKGgGaAloD0MIN6rTgawXEcCUhpRSlGgVSzJoFkdAnH84D9wWFnV9lChoBmgJaA9DCJLn+j4cZBDAlIaUUpRoFUsyaBZHQJx+/Lr5ZbJ1fZQoaAZoCWgPQwijrrX3qWoIwJSGlFKUaBVLMmgWR0CcgGIHTqjadX2UKGgGaAloD0MIu0c2V83TEMCUhpRSlGgVSzJoFkdAnIAdrGipN3V9lChoBmgJaA9DCFBR9Sudrw/AlIaUUpRoFUsyaBZHQJx/3Q1JlJ91fZQoaAZoCWgPQwhvnX+77PcMwJSGlFKUaBVLMmgWR0Ccf6GqxTsIdX2UKGgGaAloD0MItJQsJ6FUGcCUhpRSlGgVSzJoFkdAnIELRSgoPXV9lChoBmgJaA9DCNffEoB/OhbAlIaUUpRoFUsyaBZHQJyAxuxbB451fZQoaAZoCWgPQwhf04OCUnQLwJSGlFKUaBVLMmgWR0CcgIZPl+3IdX2UKGgGaAloD0MIDcNHxJT4F8CUhpRSlGgVSzJoFkdAnIBK9GqgiHV9lChoBmgJaA9DCGd9yjFZnATAlIaUUpRoFUsyaBZHQJyBtsyi22J1fZQoaAZoCWgPQwgF3V7SGE0XwJSGlFKUaBVLMmgWR0CcgXJrcj7idX2UKGgGaAloD0MIJqjhW1iXDsCUhpRSlGgVSzJoFkdAnIExx1gYxnV9lChoBmgJaA9DCFNaf0sAXg/AlIaUUpRoFUsyaBZHQJyA9mTTvy91fZQoaAZoCWgPQwiRf2YQH9gMwJSGlFKUaBVLMmgWR0Ccgmfj0cwQdX2UKGgGaAloD0MIPJ8B9Wa0A8CUhpRSlGgVSzJoFkdAnIIjhHbypnV9lChoBmgJaA9DCJeL+E7MehLAlIaUUpRoFUsyaBZHQJyB4ubqhUR1fZQoaAZoCWgPQwhCQSlaudcIwJSGlFKUaBVLMmgWR0CcgaeE7GNrdX2UKGgGaAloD0MI4Lw48dXuC8CUhpRSlGgVSzJoFkdAnIMZpSJj2HV9lChoBmgJaA9DCONsOgK4KRHAlIaUUpRoFUsyaBZHQJyC1UYKpkx1fZQoaAZoCWgPQwjNP/omTcMQwJSGlFKUaBVLMmgWR0CcgpTJhfBvdX2UKGgGaAloD0MIaAWGrG51EMCUhpRSlGgVSzJoFkdAnIJZdnkDIXV9lChoBmgJaA9DCIPCoEyjqRPAlIaUUpRoFUsyaBZHQJyDxuuRs/J1fZQoaAZoCWgPQwj+f5wwYRQXwJSGlFKUaBVLMmgWR0Ccg4Kk2xY8dX2UKGgGaAloD0MIe6NWmL6XDMCUhpRSlGgVSzJoFkdAnINCKWLP2XV9lChoBmgJaA9DCL6DnziAHhHAlIaUUpRoFUsyaBZHQJyDBtMwlB11fZQoaAZoCWgPQwj3cp8cBQgFwJSGlFKUaBVLMmgWR0CchHJQcghbdX2UKGgGaAloD0MIStQLPs3JCsCUhpRSlGgVSzJoFkdAnIQt3jdYXHV9lChoBmgJaA9DCJZ5q65D9QrAlIaUUpRoFUsyaBZHQJyD7UAksz51fZQoaAZoCWgPQwi5izBFuZQRwJSGlFKUaBVLMmgWR0Ccg7He7+UAdX2UKGgGaAloD0MIzT/6Jk3TFsCUhpRSlGgVSzJoFkdAnIUhceKba3V9lChoBmgJaA9DCMCy0qQURBHAlIaUUpRoFUsyaBZHQJyE3Q2MsH11fZQoaAZoCWgPQwj6JeKt8x8UwJSGlFKUaBVLMmgWR0CchJxptaZAdX2UKGgGaAloD0MIS+XtCKflBcCUhpRSlGgVSzJoFkdAnIRhFmWdE3V9lChoBmgJaA9DCNcXCW059wrAlIaUUpRoFUsyaBZHQJyFzOGCZnd1fZQoaAZoCWgPQwhuwVJdwCsGwJSGlFKUaBVLMmgWR0CchYiaiKzidX2UKGgGaAloD0MIQnkfR3NED8CUhpRSlGgVSzJoFkdAnIVH9BKL9HV9lChoBmgJaA9DCFDkSdI1sw7AlIaUUpRoFUsyaBZHQJyFDIdU83d1fZQoaAZoCWgPQwhxAP2+f7MPwJSGlFKUaBVLMmgWR0CchnblijL0dX2UKGgGaAloD0MIwk1GlWEcFMCUhpRSlGgVSzJoFkdAnIYysKb8WXV9lChoBmgJaA9DCAbYR6euXAjAlIaUUpRoFUsyaBZHQJyF8hhYvFp1fZQoaAZoCWgPQwgwSWWKOcgAwJSGlFKUaBVLMmgWR0Cchba8Yht+dX2UKGgGaAloD0MIba0vEtryDsCUhpRSlGgVSzJoFkdAnIch73PAwnV9lChoBmgJaA9DCHBdMSO8PQbAlIaUUpRoFUsyaBZHQJyG3bVSXMR1fZQoaAZoCWgPQwi5/fLJiqEQwJSGlFKUaBVLMmgWR0Cchp0qpcX4dX2UKGgGaAloD0MIEOz4LxDkBsCUhpRSlGgVSzJoFkdAnIZhw++ueXV9lChoBmgJaA9DCNS4N79hwgbAlIaUUpRoFUsyaBZHQJyHz0Yj0MB1fZQoaAZoCWgPQwiXGwx1WAEKwJSGlFKUaBVLMmgWR0Cch4rjHXEqdX2UKGgGaAloD0MISWb1DrfDCMCUhpRSlGgVSzJoFkdAnIdKSHM2WXV9lChoBmgJaA9DCH2VfOwuMA/AlIaUUpRoFUsyaBZHQJyHDvRZ2ZB1fZQoaAZoCWgPQwithVlo55QSwJSGlFKUaBVLMmgWR0CciHjUNKAbdX2UKGgGaAloD0MIIjgu46YGF8CUhpRSlGgVSzJoFkdAnIg0btJFs3V9lChoBmgJaA9DCGDoEaPnlgjAlIaUUpRoFUsyaBZHQJyH88yN4qx1fZQoaAZoCWgPQwhR2ht8YSIQwJSGlFKUaBVLMmgWR0Cch7hhpg1FdX2UKGgGaAloD0MIZ9Km6h5JEcCUhpRSlGgVSzJoFkdAnIkiIP9UCXV9lChoBmgJaA9DCNl3RfC/dQbAlIaUUpRoFUsyaBZHQJyI3lr/Khd1fZQoaAZoCWgPQwijHTf8btoCwJSGlFKUaBVLMmgWR0CciJ3CsOoYdX2UKGgGaAloD0MIhsq/lleOD8CUhpRSlGgVSzJoFkdAnIhiWzF+/nV9lChoBmgJaA9DCFA25QrvAhfAlIaUUpRoFUsyaBZHQJyJ0DxLCep1fZQoaAZoCWgPQwgoDTUKSdYTwJSGlFKUaBVLMmgWR0CciYvQ4S6EdX2UKGgGaAloD0MIM6ZgjbMp+7+UhpRSlGgVSzJoFkdAnIlLOAy2yHV9lChoBmgJaA9DCLqkarsJXgfAlIaUUpRoFUsyaBZHQJyJD8uSOip1fZQoaAZoCWgPQwgkD0QWaeIIwJSGlFKUaBVLMmgWR0CcioHZsbeedX2UKGgGaAloD0MInQ35ZwZhFsCUhpRSlGgVSzJoFkdAnIo9cbBGhHV9lChoBmgJaA9DCJHyk2qfzv6/lIaUUpRoFUsyaBZHQJyJ/Npudf91fZQoaAZoCWgPQwixNPCjGlYPwJSGlFKUaBVLMmgWR0CcicFw1ivxdX2UKGgGaAloD0MI+84vStCfDsCUhpRSlGgVSzJoFkdAnIsxwuM+/3V9lChoBmgJaA9DCNrKS/4nfxHAlIaUUpRoFUsyaBZHQJyK7YqXnhd1fZQoaAZoCWgPQwgAcOzZcykSwJSGlFKUaBVLMmgWR0Cciqz1bqyGdX2UKGgGaAloD0MI3LdaJy4XFMCUhpRSlGgVSzJoFkdAnIpxjz7MxHV9lChoBmgJaA9DCL/xtWeWRBDAlIaUUpRoFUsyaBZHQJyL5D6WPcV1fZQoaAZoCWgPQwjDZoALsiUJwJSGlFKUaBVLMmgWR0Cci5/Vy3kQdX2UKGgGaAloD0MIM/rRcMp8DcCUhpRSlGgVSzJoFkdAnItfQnhKlHV9lChoBmgJaA9DCOHs1jIZ/hXAlIaUUpRoFUsyaBZHQJyLI+t8uz11fZQoaAZoCWgPQwjGUE60q7AHwJSGlFKUaBVLMmgWR0CcjJcnE2pAdX2UKGgGaAloD0MIM6MfDafMDcCUhpRSlGgVSzJoFkdAnIxS9EkSmXV9lChoBmgJaA9DCIekFkompwbAlIaUUpRoFUsyaBZHQJyMEmfGuLd1fZQoaAZoCWgPQwhZFkz8UQQTwJSGlFKUaBVLMmgWR0Cci9cWTHKfdX2UKGgGaAloD0MIjV4NUBqKBsCUhpRSlGgVSzJoFkdAnI1JC0F8onV9lChoBmgJaA9DCIVALnHkYQjAlIaUUpRoFUsyaBZHQJyNBNDc/MZ1fZQoaAZoCWgPQwgDX9Gt1xQSwJSGlFKUaBVLMmgWR0CcjMQr+YMOdX2UKGgGaAloD0MItixfl+GfDcCUhpRSlGgVSzJoFkdAnIyIzzmOl3V9lChoBmgJaA9DCMEdqFMe3RnAlIaUUpRoFUsyaBZHQJyN+aOPvKF1fZQoaAZoCWgPQwg90uC2tqAQwJSGlFKUaBVLMmgWR0CcjbU6PsAvdX2UKGgGaAloD0MIFyzVBbwsCcCUhpRSlGgVSzJoFkdAnI10nCwbEXV9lChoBmgJaA9DCL7aUZyjjgjAlIaUUpRoFUsyaBZHQJyNOTLW7OF1ZS4="
60
+ },
61
+ "ep_success_buffer": {
62
+ ":type:": "<class 'collections.deque'>",
63
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
64
+ },
65
+ "_n_updates": 100000,
66
+ "n_steps": 5,
67
+ "gamma": 0.99,
68
+ "gae_lambda": 1.0,
69
+ "ent_coef": 0.0,
70
+ "vf_coef": 0.5,
71
+ "max_grad_norm": 0.5,
72
+ "normalize_advantage": false,
73
+ "observation_space": {
74
+ ":type:": "<class 'gym.spaces.dict.Dict'>",
75
+ ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu",
76
+ "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
77
+ "_shape": null,
78
+ "dtype": null,
79
+ "_np_random": null
80
+ },
81
+ "action_space": {
82
+ ":type:": "<class 'gym.spaces.box.Box'>",
83
+ ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
84
+ "dtype": "float32",
85
+ "_shape": [
86
+ 3
87
+ ],
88
+ "low": "[-1. -1. -1.]",
89
+ "high": "[1. 1. 1.]",
90
+ "bounded_below": "[ True True True]",
91
+ "bounded_above": "[ True True True]",
92
+ "_np_random": null
93
+ },
94
+ "n_envs": 4
95
+ }
a2c-PandaReachDense-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f56ca32320b59c4f6137b772aed03bbdee778bd6c5d3240051a0751cc9f8e022
3
+ size 44606
a2c-PandaReachDense-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ebc0d0b7fa725c3f780fb05e8a4a95394290faa00f56a422514c45804af3c72e
3
+ size 45886
a2c-PandaReachDense-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-PandaReachDense-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: macOS-13.2.1-arm64-arm-64bit Darwin Kernel Version 22.3.0: Mon Jan 30 20:38:37 PST 2023; root:xnu-8792.81.3~2/RELEASE_ARM64_T6000
2
+ - Python: 3.8.13
3
+ - Stable-Baselines3: 1.8.0
4
+ - PyTorch: 2.0.0
5
+ - GPU Enabled: False
6
+ - Numpy: 1.21.2
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x2a0cfdee0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x2a0cf0d20>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1682382590514818000, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVEwMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMcC9vcHQvaG9tZWJyZXcvQ2Fza3Jvb20vbWFtYmFmb3JnZS9iYXNlL2VudnMvdG9yY2gyL2xpYi9weXRob24zLjgvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjHAvb3B0L2hvbWVicmV3L0Nhc2tyb29tL21hbWJhZm9yZ2UvYmFzZS9lbnZzL3RvcmNoMi9saWIvcHl0aG9uMy44L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAp3XPPoEHP70uXCs/p3XPPoEHP70uXCs/p3XPPoEHP70uXCs/p3XPPoEHP70uXCs/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAztvNv+TrYj6Y3dY/6vBKP5+7zrx428m/S3lgv/dQCD/AzCk/+37Qv2bv5D7+3oy/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAACndc8+gQc/vS5cKz/vFck7j0ryu1zgjzyndc8+gQc/vS5cKz/vFck7j0ryu1zgjzyndc8+gQc/vS5cKz/vFck7j0ryu1zgjzyndc8+gQc/vS5cKz/vFck7j0ryu1zgjzyUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.4051945 -0.04663802 0.6693753 ]\n [ 0.4051945 -0.04663802 0.6693753 ]\n [ 0.4051945 -0.04663802 0.6693753 ]\n [ 0.4051945 -0.04663802 0.6693753 ]]", "desired_goal": "[[-1.6082704 0.22160298 1.6786375 ]\n [ 0.79273856 -0.02523595 -1.5770102 ]\n [-0.8768508 0.5324854 0.6632805 ]\n [-1.6288751 0.44713897 -1.1005552 ]]", "observation": "[[ 0.4051945 -0.04663802 0.6693753 0.00613665 -0.00739414 0.01756304]\n [ 0.4051945 -0.04663802 0.6693753 0.00613665 -0.00739414 0.01756304]\n [ 0.4051945 -0.04663802 0.6693753 0.00613665 -0.00739414 0.01756304]\n [ 0.4051945 -0.04663802 0.6693753 0.00613665 -0.00739414 0.01756304]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPQFqGqxDI0o+6nIdPQFqGqxDI0o+6nIdPQFqGqxDI0o+6nIdPQFqGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAcZJmPU0XHD0N1FM+jcGZPeMtJ7w23lQ+A+nJPR4aG71qW2M+C1uOvVf6r70njRU+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09AWoarEMjSj4AAAAAAAAAgAAAAADqch09AWoarEMjSj4AAAAAAAAAgAAAAADqch09AWoarEMjSj4AAAAAAAAAgAAAAADqch09AWoarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1943560e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1943560e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1943560e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1943560e-12 1.9740014e-01]]", "desired_goal": "[[ 0.056292 0.03810816 0.2068636 ]\n [ 0.0750762 -0.01020381 0.20787892]\n [ 0.09858897 -0.0378667 0.2220284 ]\n [-0.06950959 -0.0859267 0.14604627]]", "observation": "[[ 3.8439669e-02 -2.1943560e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1943560e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1943560e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1943560e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIsHH9uz5TCMCUhpRSlIwBbJRLMowBdJRHQJx9q1Bt1p11fZQoaAZoCWgPQwjXicvxCkQHwJSGlFKUaBVLMmgWR0CcfWbkfcN6dX2UKGgGaAloD0MIiudsAaEFEMCUhpRSlGgVSzJoFkdAnH0mRq46O3V9lChoBmgJaA9DCAjMQ6Z8OBDAlIaUUpRoFUsyaBZHQJx86w6hg3N1fZQoaAZoCWgPQwgnpDUGnVALwJSGlFKUaBVLMmgWR0Ccfl+3Ytg8dX2UKGgGaAloD0MIG7luSnltDcCUhpRSlGgVSzJoFkdAnH4bVOKwZHV9lChoBmgJaA9DCFteud42Ew/AlIaUUpRoFUsyaBZHQJx92uB+Wnl1fZQoaAZoCWgPQwifq63YX9YKwJSGlFKUaBVLMmgWR0CcfZ+GGmDUdX2UKGgGaAloD0MIar5KPnYXDcCUhpRSlGgVSzJoFkdAnH8U/jbSJHV9lChoBmgJaA9DCMu8VdehWg7AlIaUUpRoFUsyaBZHQJx+0JqqOtJ1fZQoaAZoCWgPQwjjiLX4FIAQwJSGlFKUaBVLMmgWR0Ccfo/6O5rhdX2UKGgGaAloD0MIJT/iV6xBEMCUhpRSlGgVSzJoFkdAnH5UlNUOu3V9lChoBmgJaA9DCKg1zTtOERLAlIaUUpRoFUsyaBZHQJx/vPyCnP51fZQoaAZoCWgPQwjK3lLOF9sHwJSGlFKUaBVLMmgWR0Ccf3iUPhAGdX2UKGgGaAloD0MIN6rTgawXEcCUhpRSlGgVSzJoFkdAnH84D9wWFnV9lChoBmgJaA9DCJLn+j4cZBDAlIaUUpRoFUsyaBZHQJx+/Lr5ZbJ1fZQoaAZoCWgPQwijrrX3qWoIwJSGlFKUaBVLMmgWR0CcgGIHTqjadX2UKGgGaAloD0MIu0c2V83TEMCUhpRSlGgVSzJoFkdAnIAdrGipN3V9lChoBmgJaA9DCFBR9Sudrw/AlIaUUpRoFUsyaBZHQJx/3Q1JlJ91fZQoaAZoCWgPQwhvnX+77PcMwJSGlFKUaBVLMmgWR0Ccf6GqxTsIdX2UKGgGaAloD0MItJQsJ6FUGcCUhpRSlGgVSzJoFkdAnIELRSgoPXV9lChoBmgJaA9DCNffEoB/OhbAlIaUUpRoFUsyaBZHQJyAxuxbB451fZQoaAZoCWgPQwhf04OCUnQLwJSGlFKUaBVLMmgWR0CcgIZPl+3IdX2UKGgGaAloD0MIDcNHxJT4F8CUhpRSlGgVSzJoFkdAnIBK9GqgiHV9lChoBmgJaA9DCGd9yjFZnATAlIaUUpRoFUsyaBZHQJyBtsyi22J1fZQoaAZoCWgPQwgF3V7SGE0XwJSGlFKUaBVLMmgWR0CcgXJrcj7idX2UKGgGaAloD0MIJqjhW1iXDsCUhpRSlGgVSzJoFkdAnIExx1gYxnV9lChoBmgJaA9DCFNaf0sAXg/AlIaUUpRoFUsyaBZHQJyA9mTTvy91fZQoaAZoCWgPQwiRf2YQH9gMwJSGlFKUaBVLMmgWR0Ccgmfj0cwQdX2UKGgGaAloD0MIPJ8B9Wa0A8CUhpRSlGgVSzJoFkdAnIIjhHbypnV9lChoBmgJaA9DCJeL+E7MehLAlIaUUpRoFUsyaBZHQJyB4ubqhUR1fZQoaAZoCWgPQwhCQSlaudcIwJSGlFKUaBVLMmgWR0CcgaeE7GNrdX2UKGgGaAloD0MI4Lw48dXuC8CUhpRSlGgVSzJoFkdAnIMZpSJj2HV9lChoBmgJaA9DCONsOgK4KRHAlIaUUpRoFUsyaBZHQJyC1UYKpkx1fZQoaAZoCWgPQwjNP/omTcMQwJSGlFKUaBVLMmgWR0CcgpTJhfBvdX2UKGgGaAloD0MIaAWGrG51EMCUhpRSlGgVSzJoFkdAnIJZdnkDIXV9lChoBmgJaA9DCIPCoEyjqRPAlIaUUpRoFUsyaBZHQJyDxuuRs/J1fZQoaAZoCWgPQwj+f5wwYRQXwJSGlFKUaBVLMmgWR0Ccg4Kk2xY8dX2UKGgGaAloD0MIe6NWmL6XDMCUhpRSlGgVSzJoFkdAnINCKWLP2XV9lChoBmgJaA9DCL6DnziAHhHAlIaUUpRoFUsyaBZHQJyDBtMwlB11fZQoaAZoCWgPQwj3cp8cBQgFwJSGlFKUaBVLMmgWR0CchHJQcghbdX2UKGgGaAloD0MIStQLPs3JCsCUhpRSlGgVSzJoFkdAnIQt3jdYXHV9lChoBmgJaA9DCJZ5q65D9QrAlIaUUpRoFUsyaBZHQJyD7UAksz51fZQoaAZoCWgPQwi5izBFuZQRwJSGlFKUaBVLMmgWR0Ccg7He7+UAdX2UKGgGaAloD0MIzT/6Jk3TFsCUhpRSlGgVSzJoFkdAnIUhceKba3V9lChoBmgJaA9DCMCy0qQURBHAlIaUUpRoFUsyaBZHQJyE3Q2MsH11fZQoaAZoCWgPQwj6JeKt8x8UwJSGlFKUaBVLMmgWR0CchJxptaZAdX2UKGgGaAloD0MIS+XtCKflBcCUhpRSlGgVSzJoFkdAnIRhFmWdE3V9lChoBmgJaA9DCNcXCW059wrAlIaUUpRoFUsyaBZHQJyFzOGCZnd1fZQoaAZoCWgPQwhuwVJdwCsGwJSGlFKUaBVLMmgWR0CchYiaiKzidX2UKGgGaAloD0MIQnkfR3NED8CUhpRSlGgVSzJoFkdAnIVH9BKL9HV9lChoBmgJaA9DCFDkSdI1sw7AlIaUUpRoFUsyaBZHQJyFDIdU83d1fZQoaAZoCWgPQwhxAP2+f7MPwJSGlFKUaBVLMmgWR0CchnblijL0dX2UKGgGaAloD0MIwk1GlWEcFMCUhpRSlGgVSzJoFkdAnIYysKb8WXV9lChoBmgJaA9DCAbYR6euXAjAlIaUUpRoFUsyaBZHQJyF8hhYvFp1fZQoaAZoCWgPQwgwSWWKOcgAwJSGlFKUaBVLMmgWR0Cchba8Yht+dX2UKGgGaAloD0MIba0vEtryDsCUhpRSlGgVSzJoFkdAnIch73PAwnV9lChoBmgJaA9DCHBdMSO8PQbAlIaUUpRoFUsyaBZHQJyG3bVSXMR1fZQoaAZoCWgPQwi5/fLJiqEQwJSGlFKUaBVLMmgWR0Cchp0qpcX4dX2UKGgGaAloD0MIEOz4LxDkBsCUhpRSlGgVSzJoFkdAnIZhw++ueXV9lChoBmgJaA9DCNS4N79hwgbAlIaUUpRoFUsyaBZHQJyHz0Yj0MB1fZQoaAZoCWgPQwiXGwx1WAEKwJSGlFKUaBVLMmgWR0Cch4rjHXEqdX2UKGgGaAloD0MISWb1DrfDCMCUhpRSlGgVSzJoFkdAnIdKSHM2WXV9lChoBmgJaA9DCH2VfOwuMA/AlIaUUpRoFUsyaBZHQJyHDvRZ2ZB1fZQoaAZoCWgPQwithVlo55QSwJSGlFKUaBVLMmgWR0CciHjUNKAbdX2UKGgGaAloD0MIIjgu46YGF8CUhpRSlGgVSzJoFkdAnIg0btJFs3V9lChoBmgJaA9DCGDoEaPnlgjAlIaUUpRoFUsyaBZHQJyH88yN4qx1fZQoaAZoCWgPQwhR2ht8YSIQwJSGlFKUaBVLMmgWR0Cch7hhpg1FdX2UKGgGaAloD0MIZ9Km6h5JEcCUhpRSlGgVSzJoFkdAnIkiIP9UCXV9lChoBmgJaA9DCNl3RfC/dQbAlIaUUpRoFUsyaBZHQJyI3lr/Khd1fZQoaAZoCWgPQwijHTf8btoCwJSGlFKUaBVLMmgWR0CciJ3CsOoYdX2UKGgGaAloD0MIhsq/lleOD8CUhpRSlGgVSzJoFkdAnIhiWzF+/nV9lChoBmgJaA9DCFA25QrvAhfAlIaUUpRoFUsyaBZHQJyJ0DxLCep1fZQoaAZoCWgPQwgoDTUKSdYTwJSGlFKUaBVLMmgWR0CciYvQ4S6EdX2UKGgGaAloD0MIM6ZgjbMp+7+UhpRSlGgVSzJoFkdAnIlLOAy2yHV9lChoBmgJaA9DCLqkarsJXgfAlIaUUpRoFUsyaBZHQJyJD8uSOip1fZQoaAZoCWgPQwgkD0QWaeIIwJSGlFKUaBVLMmgWR0CcioHZsbeedX2UKGgGaAloD0MInQ35ZwZhFsCUhpRSlGgVSzJoFkdAnIo9cbBGhHV9lChoBmgJaA9DCJHyk2qfzv6/lIaUUpRoFUsyaBZHQJyJ/Npudf91fZQoaAZoCWgPQwixNPCjGlYPwJSGlFKUaBVLMmgWR0CcicFw1ivxdX2UKGgGaAloD0MI+84vStCfDsCUhpRSlGgVSzJoFkdAnIsxwuM+/3V9lChoBmgJaA9DCNrKS/4nfxHAlIaUUpRoFUsyaBZHQJyK7YqXnhd1fZQoaAZoCWgPQwgAcOzZcykSwJSGlFKUaBVLMmgWR0Cciqz1bqyGdX2UKGgGaAloD0MI3LdaJy4XFMCUhpRSlGgVSzJoFkdAnIpxjz7MxHV9lChoBmgJaA9DCL/xtWeWRBDAlIaUUpRoFUsyaBZHQJyL5D6WPcV1fZQoaAZoCWgPQwjDZoALsiUJwJSGlFKUaBVLMmgWR0Cci5/Vy3kQdX2UKGgGaAloD0MIM/rRcMp8DcCUhpRSlGgVSzJoFkdAnItfQnhKlHV9lChoBmgJaA9DCOHs1jIZ/hXAlIaUUpRoFUsyaBZHQJyLI+t8uz11fZQoaAZoCWgPQwjGUE60q7AHwJSGlFKUaBVLMmgWR0CcjJcnE2pAdX2UKGgGaAloD0MIM6MfDafMDcCUhpRSlGgVSzJoFkdAnIxS9EkSmXV9lChoBmgJaA9DCIekFkompwbAlIaUUpRoFUsyaBZHQJyMEmfGuLd1fZQoaAZoCWgPQwhZFkz8UQQTwJSGlFKUaBVLMmgWR0Cci9cWTHKfdX2UKGgGaAloD0MIjV4NUBqKBsCUhpRSlGgVSzJoFkdAnI1JC0F8onV9lChoBmgJaA9DCIVALnHkYQjAlIaUUpRoFUsyaBZHQJyNBNDc/MZ1fZQoaAZoCWgPQwgDX9Gt1xQSwJSGlFKUaBVLMmgWR0CcjMQr+YMOdX2UKGgGaAloD0MItixfl+GfDcCUhpRSlGgVSzJoFkdAnIyIzzmOl3V9lChoBmgJaA9DCMEdqFMe3RnAlIaUUpRoFUsyaBZHQJyN+aOPvKF1fZQoaAZoCWgPQwg90uC2tqAQwJSGlFKUaBVLMmgWR0CcjbU6PsAvdX2UKGgGaAloD0MIFyzVBbwsCcCUhpRSlGgVSzJoFkdAnI10nCwbEXV9lChoBmgJaA9DCL7aUZyjjgjAlIaUUpRoFUsyaBZHQJyNOTLW7OF1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 100000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "macOS-13.2.1-arm64-arm-64bit Darwin Kernel Version 22.3.0: Mon Jan 30 20:38:37 PST 2023; root:xnu-8792.81.3~2/RELEASE_ARM64_T6000", "Python": "3.8.13", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.0", "GPU Enabled": "False", "Numpy": "1.21.2", "Gym": "0.21.0"}}
replay.mp4 ADDED
Binary file (859 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -3.822807007562369, "std_reward": 1.0350434913318647, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-04-24T21:20:46.680643"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ced1eebadab4a69c81ad6a16d9a11b4ccdfaa2e00fced5c71935a53c907f5fb8
3
+ size 2381