Initial commit
Browse files- README.md +37 -0
- a2c-PandaReachDense-v2.zip +3 -0
- a2c-PandaReachDense-v2/_stable_baselines3_version +1 -0
- a2c-PandaReachDense-v2/data +95 -0
- a2c-PandaReachDense-v2/policy.optimizer.pth +3 -0
- a2c-PandaReachDense-v2/policy.pth +3 -0
- a2c-PandaReachDense-v2/pytorch_variables.pth +3 -0
- a2c-PandaReachDense-v2/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +0 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- PandaReachDense-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: PandaReachDense-v2
|
16 |
+
type: PandaReachDense-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: -3.82 +/- 1.04
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **PandaReachDense-v2**
|
25 |
+
This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-PandaReachDense-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:31ec833da0253248f1c6be3a5dbfe72d57bf1e70613d72e6523b29dd9fdbea0d
|
3 |
+
size 107946
|
a2c-PandaReachDense-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.8.0
|
a2c-PandaReachDense-v2/data
ADDED
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x2a0cfdee0>",
|
8 |
+
"__abstractmethods__": "frozenset()",
|
9 |
+
"_abc_impl": "<_abc_data object at 0x2a0cf0d20>"
|
10 |
+
},
|
11 |
+
"verbose": 1,
|
12 |
+
"policy_kwargs": {
|
13 |
+
":type:": "<class 'dict'>",
|
14 |
+
":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
|
15 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
16 |
+
"optimizer_kwargs": {
|
17 |
+
"alpha": 0.99,
|
18 |
+
"eps": 1e-05,
|
19 |
+
"weight_decay": 0
|
20 |
+
}
|
21 |
+
},
|
22 |
+
"num_timesteps": 2000000,
|
23 |
+
"_total_timesteps": 2000000,
|
24 |
+
"_num_timesteps_at_start": 0,
|
25 |
+
"seed": null,
|
26 |
+
"action_noise": null,
|
27 |
+
"start_time": 1682382590514818000,
|
28 |
+
"learning_rate": 0.0007,
|
29 |
+
"tensorboard_log": null,
|
30 |
+
"lr_schedule": {
|
31 |
+
":type:": "<class 'function'>",
|
32 |
+
":serialized:": "gAWVEwMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMcC9vcHQvaG9tZWJyZXcvQ2Fza3Jvb20vbWFtYmFmb3JnZS9iYXNlL2VudnMvdG9yY2gyL2xpYi9weXRob24zLjgvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjHAvb3B0L2hvbWVicmV3L0Nhc2tyb29tL21hbWJhZm9yZ2UvYmFzZS9lbnZzL3RvcmNoMi9saWIvcHl0aG9uMy44L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
33 |
+
},
|
34 |
+
"_last_obs": {
|
35 |
+
":type:": "<class 'collections.OrderedDict'>",
|
36 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAp3XPPoEHP70uXCs/p3XPPoEHP70uXCs/p3XPPoEHP70uXCs/p3XPPoEHP70uXCs/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAztvNv+TrYj6Y3dY/6vBKP5+7zrx428m/S3lgv/dQCD/AzCk/+37Qv2bv5D7+3oy/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAACndc8+gQc/vS5cKz/vFck7j0ryu1zgjzyndc8+gQc/vS5cKz/vFck7j0ryu1zgjzyndc8+gQc/vS5cKz/vFck7j0ryu1zgjzyndc8+gQc/vS5cKz/vFck7j0ryu1zgjzyUaA5LBEsGhpRoEnSUUpR1Lg==",
|
37 |
+
"achieved_goal": "[[ 0.4051945 -0.04663802 0.6693753 ]\n [ 0.4051945 -0.04663802 0.6693753 ]\n [ 0.4051945 -0.04663802 0.6693753 ]\n [ 0.4051945 -0.04663802 0.6693753 ]]",
|
38 |
+
"desired_goal": "[[-1.6082704 0.22160298 1.6786375 ]\n [ 0.79273856 -0.02523595 -1.5770102 ]\n [-0.8768508 0.5324854 0.6632805 ]\n [-1.6288751 0.44713897 -1.1005552 ]]",
|
39 |
+
"observation": "[[ 0.4051945 -0.04663802 0.6693753 0.00613665 -0.00739414 0.01756304]\n [ 0.4051945 -0.04663802 0.6693753 0.00613665 -0.00739414 0.01756304]\n [ 0.4051945 -0.04663802 0.6693753 0.00613665 -0.00739414 0.01756304]\n [ 0.4051945 -0.04663802 0.6693753 0.00613665 -0.00739414 0.01756304]]"
|
40 |
+
},
|
41 |
+
"_last_episode_starts": {
|
42 |
+
":type:": "<class 'numpy.ndarray'>",
|
43 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
44 |
+
},
|
45 |
+
"_last_original_obs": {
|
46 |
+
":type:": "<class 'collections.OrderedDict'>",
|
47 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPQFqGqxDI0o+6nIdPQFqGqxDI0o+6nIdPQFqGqxDI0o+6nIdPQFqGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAcZJmPU0XHD0N1FM+jcGZPeMtJ7w23lQ+A+nJPR4aG71qW2M+C1uOvVf6r70njRU+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09AWoarEMjSj4AAAAAAAAAgAAAAADqch09AWoarEMjSj4AAAAAAAAAgAAAAADqch09AWoarEMjSj4AAAAAAAAAgAAAAADqch09AWoarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
|
48 |
+
"achieved_goal": "[[ 3.8439669e-02 -2.1943560e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1943560e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1943560e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1943560e-12 1.9740014e-01]]",
|
49 |
+
"desired_goal": "[[ 0.056292 0.03810816 0.2068636 ]\n [ 0.0750762 -0.01020381 0.20787892]\n [ 0.09858897 -0.0378667 0.2220284 ]\n [-0.06950959 -0.0859267 0.14604627]]",
|
50 |
+
"observation": "[[ 3.8439669e-02 -2.1943560e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1943560e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1943560e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1943560e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
51 |
+
},
|
52 |
+
"_episode_num": 0,
|
53 |
+
"use_sde": false,
|
54 |
+
"sde_sample_freq": -1,
|
55 |
+
"_current_progress_remaining": 0.0,
|
56 |
+
"_stats_window_size": 100,
|
57 |
+
"ep_info_buffer": {
|
58 |
+
":type:": "<class 'collections.deque'>",
|
59 |
+
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIsHH9uz5TCMCUhpRSlIwBbJRLMowBdJRHQJx9q1Bt1p11fZQoaAZoCWgPQwjXicvxCkQHwJSGlFKUaBVLMmgWR0CcfWbkfcN6dX2UKGgGaAloD0MIiudsAaEFEMCUhpRSlGgVSzJoFkdAnH0mRq46O3V9lChoBmgJaA9DCAjMQ6Z8OBDAlIaUUpRoFUsyaBZHQJx86w6hg3N1fZQoaAZoCWgPQwgnpDUGnVALwJSGlFKUaBVLMmgWR0Ccfl+3Ytg8dX2UKGgGaAloD0MIG7luSnltDcCUhpRSlGgVSzJoFkdAnH4bVOKwZHV9lChoBmgJaA9DCFteud42Ew/AlIaUUpRoFUsyaBZHQJx92uB+Wnl1fZQoaAZoCWgPQwifq63YX9YKwJSGlFKUaBVLMmgWR0CcfZ+GGmDUdX2UKGgGaAloD0MIar5KPnYXDcCUhpRSlGgVSzJoFkdAnH8U/jbSJHV9lChoBmgJaA9DCMu8VdehWg7AlIaUUpRoFUsyaBZHQJx+0JqqOtJ1fZQoaAZoCWgPQwjjiLX4FIAQwJSGlFKUaBVLMmgWR0Ccfo/6O5rhdX2UKGgGaAloD0MIJT/iV6xBEMCUhpRSlGgVSzJoFkdAnH5UlNUOu3V9lChoBmgJaA9DCKg1zTtOERLAlIaUUpRoFUsyaBZHQJx/vPyCnP51fZQoaAZoCWgPQwjK3lLOF9sHwJSGlFKUaBVLMmgWR0Ccf3iUPhAGdX2UKGgGaAloD0MIN6rTgawXEcCUhpRSlGgVSzJoFkdAnH84D9wWFnV9lChoBmgJaA9DCJLn+j4cZBDAlIaUUpRoFUsyaBZHQJx+/Lr5ZbJ1fZQoaAZoCWgPQwijrrX3qWoIwJSGlFKUaBVLMmgWR0CcgGIHTqjadX2UKGgGaAloD0MIu0c2V83TEMCUhpRSlGgVSzJoFkdAnIAdrGipN3V9lChoBmgJaA9DCFBR9Sudrw/AlIaUUpRoFUsyaBZHQJx/3Q1JlJ91fZQoaAZoCWgPQwhvnX+77PcMwJSGlFKUaBVLMmgWR0Ccf6GqxTsIdX2UKGgGaAloD0MItJQsJ6FUGcCUhpRSlGgVSzJoFkdAnIELRSgoPXV9lChoBmgJaA9DCNffEoB/OhbAlIaUUpRoFUsyaBZHQJyAxuxbB451fZQoaAZoCWgPQwhf04OCUnQLwJSGlFKUaBVLMmgWR0CcgIZPl+3IdX2UKGgGaAloD0MIDcNHxJT4F8CUhpRSlGgVSzJoFkdAnIBK9GqgiHV9lChoBmgJaA9DCGd9yjFZnATAlIaUUpRoFUsyaBZHQJyBtsyi22J1fZQoaAZoCWgPQwgF3V7SGE0XwJSGlFKUaBVLMmgWR0CcgXJrcj7idX2UKGgGaAloD0MIJqjhW1iXDsCUhpRSlGgVSzJoFkdAnIExx1gYxnV9lChoBmgJaA9DCFNaf0sAXg/AlIaUUpRoFUsyaBZHQJyA9mTTvy91fZQoaAZoCWgPQwiRf2YQH9gMwJSGlFKUaBVLMmgWR0Ccgmfj0cwQdX2UKGgGaAloD0MIPJ8B9Wa0A8CUhpRSlGgVSzJoFkdAnIIjhHbypnV9lChoBmgJaA9DCJeL+E7MehLAlIaUUpRoFUsyaBZHQJyB4ubqhUR1fZQoaAZoCWgPQwhCQSlaudcIwJSGlFKUaBVLMmgWR0CcgaeE7GNrdX2UKGgGaAloD0MI4Lw48dXuC8CUhpRSlGgVSzJoFkdAnIMZpSJj2HV9lChoBmgJaA9DCONsOgK4KRHAlIaUUpRoFUsyaBZHQJyC1UYKpkx1fZQoaAZoCWgPQwjNP/omTcMQwJSGlFKUaBVLMmgWR0CcgpTJhfBvdX2UKGgGaAloD0MIaAWGrG51EMCUhpRSlGgVSzJoFkdAnIJZdnkDIXV9lChoBmgJaA9DCIPCoEyjqRPAlIaUUpRoFUsyaBZHQJyDxuuRs/J1fZQoaAZoCWgPQwj+f5wwYRQXwJSGlFKUaBVLMmgWR0Ccg4Kk2xY8dX2UKGgGaAloD0MIe6NWmL6XDMCUhpRSlGgVSzJoFkdAnINCKWLP2XV9lChoBmgJaA9DCL6DnziAHhHAlIaUUpRoFUsyaBZHQJyDBtMwlB11fZQoaAZoCWgPQwj3cp8cBQgFwJSGlFKUaBVLMmgWR0CchHJQcghbdX2UKGgGaAloD0MIStQLPs3JCsCUhpRSlGgVSzJoFkdAnIQt3jdYXHV9lChoBmgJaA9DCJZ5q65D9QrAlIaUUpRoFUsyaBZHQJyD7UAksz51fZQoaAZoCWgPQwi5izBFuZQRwJSGlFKUaBVLMmgWR0Ccg7He7+UAdX2UKGgGaAloD0MIzT/6Jk3TFsCUhpRSlGgVSzJoFkdAnIUhceKba3V9lChoBmgJaA9DCMCy0qQURBHAlIaUUpRoFUsyaBZHQJyE3Q2MsH11fZQoaAZoCWgPQwj6JeKt8x8UwJSGlFKUaBVLMmgWR0CchJxptaZAdX2UKGgGaAloD0MIS+XtCKflBcCUhpRSlGgVSzJoFkdAnIRhFmWdE3V9lChoBmgJaA9DCNcXCW059wrAlIaUUpRoFUsyaBZHQJyFzOGCZnd1fZQoaAZoCWgPQwhuwVJdwCsGwJSGlFKUaBVLMmgWR0CchYiaiKzidX2UKGgGaAloD0MIQnkfR3NED8CUhpRSlGgVSzJoFkdAnIVH9BKL9HV9lChoBmgJaA9DCFDkSdI1sw7AlIaUUpRoFUsyaBZHQJyFDIdU83d1fZQoaAZoCWgPQwhxAP2+f7MPwJSGlFKUaBVLMmgWR0CchnblijL0dX2UKGgGaAloD0MIwk1GlWEcFMCUhpRSlGgVSzJoFkdAnIYysKb8WXV9lChoBmgJaA9DCAbYR6euXAjAlIaUUpRoFUsyaBZHQJyF8hhYvFp1fZQoaAZoCWgPQwgwSWWKOcgAwJSGlFKUaBVLMmgWR0Cchba8Yht+dX2UKGgGaAloD0MIba0vEtryDsCUhpRSlGgVSzJoFkdAnIch73PAwnV9lChoBmgJaA9DCHBdMSO8PQbAlIaUUpRoFUsyaBZHQJyG3bVSXMR1fZQoaAZoCWgPQwi5/fLJiqEQwJSGlFKUaBVLMmgWR0Cchp0qpcX4dX2UKGgGaAloD0MIEOz4LxDkBsCUhpRSlGgVSzJoFkdAnIZhw++ueXV9lChoBmgJaA9DCNS4N79hwgbAlIaUUpRoFUsyaBZHQJyHz0Yj0MB1fZQoaAZoCWgPQwiXGwx1WAEKwJSGlFKUaBVLMmgWR0Cch4rjHXEqdX2UKGgGaAloD0MISWb1DrfDCMCUhpRSlGgVSzJoFkdAnIdKSHM2WXV9lChoBmgJaA9DCH2VfOwuMA/AlIaUUpRoFUsyaBZHQJyHDvRZ2ZB1fZQoaAZoCWgPQwithVlo55QSwJSGlFKUaBVLMmgWR0CciHjUNKAbdX2UKGgGaAloD0MIIjgu46YGF8CUhpRSlGgVSzJoFkdAnIg0btJFs3V9lChoBmgJaA9DCGDoEaPnlgjAlIaUUpRoFUsyaBZHQJyH88yN4qx1fZQoaAZoCWgPQwhR2ht8YSIQwJSGlFKUaBVLMmgWR0Cch7hhpg1FdX2UKGgGaAloD0MIZ9Km6h5JEcCUhpRSlGgVSzJoFkdAnIkiIP9UCXV9lChoBmgJaA9DCNl3RfC/dQbAlIaUUpRoFUsyaBZHQJyI3lr/Khd1fZQoaAZoCWgPQwijHTf8btoCwJSGlFKUaBVLMmgWR0CciJ3CsOoYdX2UKGgGaAloD0MIhsq/lleOD8CUhpRSlGgVSzJoFkdAnIhiWzF+/nV9lChoBmgJaA9DCFA25QrvAhfAlIaUUpRoFUsyaBZHQJyJ0DxLCep1fZQoaAZoCWgPQwgoDTUKSdYTwJSGlFKUaBVLMmgWR0CciYvQ4S6EdX2UKGgGaAloD0MIM6ZgjbMp+7+UhpRSlGgVSzJoFkdAnIlLOAy2yHV9lChoBmgJaA9DCLqkarsJXgfAlIaUUpRoFUsyaBZHQJyJD8uSOip1fZQoaAZoCWgPQwgkD0QWaeIIwJSGlFKUaBVLMmgWR0CcioHZsbeedX2UKGgGaAloD0MInQ35ZwZhFsCUhpRSlGgVSzJoFkdAnIo9cbBGhHV9lChoBmgJaA9DCJHyk2qfzv6/lIaUUpRoFUsyaBZHQJyJ/Npudf91fZQoaAZoCWgPQwixNPCjGlYPwJSGlFKUaBVLMmgWR0CcicFw1ivxdX2UKGgGaAloD0MI+84vStCfDsCUhpRSlGgVSzJoFkdAnIsxwuM+/3V9lChoBmgJaA9DCNrKS/4nfxHAlIaUUpRoFUsyaBZHQJyK7YqXnhd1fZQoaAZoCWgPQwgAcOzZcykSwJSGlFKUaBVLMmgWR0Cciqz1bqyGdX2UKGgGaAloD0MI3LdaJy4XFMCUhpRSlGgVSzJoFkdAnIpxjz7MxHV9lChoBmgJaA9DCL/xtWeWRBDAlIaUUpRoFUsyaBZHQJyL5D6WPcV1fZQoaAZoCWgPQwjDZoALsiUJwJSGlFKUaBVLMmgWR0Cci5/Vy3kQdX2UKGgGaAloD0MIM/rRcMp8DcCUhpRSlGgVSzJoFkdAnItfQnhKlHV9lChoBmgJaA9DCOHs1jIZ/hXAlIaUUpRoFUsyaBZHQJyLI+t8uz11fZQoaAZoCWgPQwjGUE60q7AHwJSGlFKUaBVLMmgWR0CcjJcnE2pAdX2UKGgGaAloD0MIM6MfDafMDcCUhpRSlGgVSzJoFkdAnIxS9EkSmXV9lChoBmgJaA9DCIekFkompwbAlIaUUpRoFUsyaBZHQJyMEmfGuLd1fZQoaAZoCWgPQwhZFkz8UQQTwJSGlFKUaBVLMmgWR0Cci9cWTHKfdX2UKGgGaAloD0MIjV4NUBqKBsCUhpRSlGgVSzJoFkdAnI1JC0F8onV9lChoBmgJaA9DCIVALnHkYQjAlIaUUpRoFUsyaBZHQJyNBNDc/MZ1fZQoaAZoCWgPQwgDX9Gt1xQSwJSGlFKUaBVLMmgWR0CcjMQr+YMOdX2UKGgGaAloD0MItixfl+GfDcCUhpRSlGgVSzJoFkdAnIyIzzmOl3V9lChoBmgJaA9DCMEdqFMe3RnAlIaUUpRoFUsyaBZHQJyN+aOPvKF1fZQoaAZoCWgPQwg90uC2tqAQwJSGlFKUaBVLMmgWR0CcjbU6PsAvdX2UKGgGaAloD0MIFyzVBbwsCcCUhpRSlGgVSzJoFkdAnI10nCwbEXV9lChoBmgJaA9DCL7aUZyjjgjAlIaUUpRoFUsyaBZHQJyNOTLW7OF1ZS4="
|
60 |
+
},
|
61 |
+
"ep_success_buffer": {
|
62 |
+
":type:": "<class 'collections.deque'>",
|
63 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
64 |
+
},
|
65 |
+
"_n_updates": 100000,
|
66 |
+
"n_steps": 5,
|
67 |
+
"gamma": 0.99,
|
68 |
+
"gae_lambda": 1.0,
|
69 |
+
"ent_coef": 0.0,
|
70 |
+
"vf_coef": 0.5,
|
71 |
+
"max_grad_norm": 0.5,
|
72 |
+
"normalize_advantage": false,
|
73 |
+
"observation_space": {
|
74 |
+
":type:": "<class 'gym.spaces.dict.Dict'>",
|
75 |
+
":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu",
|
76 |
+
"spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
|
77 |
+
"_shape": null,
|
78 |
+
"dtype": null,
|
79 |
+
"_np_random": null
|
80 |
+
},
|
81 |
+
"action_space": {
|
82 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
83 |
+
":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
|
84 |
+
"dtype": "float32",
|
85 |
+
"_shape": [
|
86 |
+
3
|
87 |
+
],
|
88 |
+
"low": "[-1. -1. -1.]",
|
89 |
+
"high": "[1. 1. 1.]",
|
90 |
+
"bounded_below": "[ True True True]",
|
91 |
+
"bounded_above": "[ True True True]",
|
92 |
+
"_np_random": null
|
93 |
+
},
|
94 |
+
"n_envs": 4
|
95 |
+
}
|
a2c-PandaReachDense-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f56ca32320b59c4f6137b772aed03bbdee778bd6c5d3240051a0751cc9f8e022
|
3 |
+
size 44606
|
a2c-PandaReachDense-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ebc0d0b7fa725c3f780fb05e8a4a95394290faa00f56a422514c45804af3c72e
|
3 |
+
size 45886
|
a2c-PandaReachDense-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-PandaReachDense-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: macOS-13.2.1-arm64-arm-64bit Darwin Kernel Version 22.3.0: Mon Jan 30 20:38:37 PST 2023; root:xnu-8792.81.3~2/RELEASE_ARM64_T6000
|
2 |
+
- Python: 3.8.13
|
3 |
+
- Stable-Baselines3: 1.8.0
|
4 |
+
- PyTorch: 2.0.0
|
5 |
+
- GPU Enabled: False
|
6 |
+
- Numpy: 1.21.2
|
7 |
+
- Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x2a0cfdee0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x2a0cf0d20>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1682382590514818000, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVEwMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMcC9vcHQvaG9tZWJyZXcvQ2Fza3Jvb20vbWFtYmFmb3JnZS9iYXNlL2VudnMvdG9yY2gyL2xpYi9weXRob24zLjgvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjHAvb3B0L2hvbWVicmV3L0Nhc2tyb29tL21hbWJhZm9yZ2UvYmFzZS9lbnZzL3RvcmNoMi9saWIvcHl0aG9uMy44L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAp3XPPoEHP70uXCs/p3XPPoEHP70uXCs/p3XPPoEHP70uXCs/p3XPPoEHP70uXCs/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAztvNv+TrYj6Y3dY/6vBKP5+7zrx428m/S3lgv/dQCD/AzCk/+37Qv2bv5D7+3oy/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAACndc8+gQc/vS5cKz/vFck7j0ryu1zgjzyndc8+gQc/vS5cKz/vFck7j0ryu1zgjzyndc8+gQc/vS5cKz/vFck7j0ryu1zgjzyndc8+gQc/vS5cKz/vFck7j0ryu1zgjzyUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.4051945 -0.04663802 0.6693753 ]\n [ 0.4051945 -0.04663802 0.6693753 ]\n [ 0.4051945 -0.04663802 0.6693753 ]\n [ 0.4051945 -0.04663802 0.6693753 ]]", "desired_goal": "[[-1.6082704 0.22160298 1.6786375 ]\n [ 0.79273856 -0.02523595 -1.5770102 ]\n [-0.8768508 0.5324854 0.6632805 ]\n [-1.6288751 0.44713897 -1.1005552 ]]", "observation": "[[ 0.4051945 -0.04663802 0.6693753 0.00613665 -0.00739414 0.01756304]\n [ 0.4051945 -0.04663802 0.6693753 0.00613665 -0.00739414 0.01756304]\n [ 0.4051945 -0.04663802 0.6693753 0.00613665 -0.00739414 0.01756304]\n [ 0.4051945 -0.04663802 0.6693753 0.00613665 -0.00739414 0.01756304]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPQFqGqxDI0o+6nIdPQFqGqxDI0o+6nIdPQFqGqxDI0o+6nIdPQFqGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAcZJmPU0XHD0N1FM+jcGZPeMtJ7w23lQ+A+nJPR4aG71qW2M+C1uOvVf6r70njRU+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09AWoarEMjSj4AAAAAAAAAgAAAAADqch09AWoarEMjSj4AAAAAAAAAgAAAAADqch09AWoarEMjSj4AAAAAAAAAgAAAAADqch09AWoarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1943560e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1943560e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1943560e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1943560e-12 1.9740014e-01]]", "desired_goal": "[[ 0.056292 0.03810816 0.2068636 ]\n [ 0.0750762 -0.01020381 0.20787892]\n [ 0.09858897 -0.0378667 0.2220284 ]\n [-0.06950959 -0.0859267 0.14604627]]", "observation": "[[ 3.8439669e-02 -2.1943560e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1943560e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1943560e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1943560e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIsHH9uz5TCMCUhpRSlIwBbJRLMowBdJRHQJx9q1Bt1p11fZQoaAZoCWgPQwjXicvxCkQHwJSGlFKUaBVLMmgWR0CcfWbkfcN6dX2UKGgGaAloD0MIiudsAaEFEMCUhpRSlGgVSzJoFkdAnH0mRq46O3V9lChoBmgJaA9DCAjMQ6Z8OBDAlIaUUpRoFUsyaBZHQJx86w6hg3N1fZQoaAZoCWgPQwgnpDUGnVALwJSGlFKUaBVLMmgWR0Ccfl+3Ytg8dX2UKGgGaAloD0MIG7luSnltDcCUhpRSlGgVSzJoFkdAnH4bVOKwZHV9lChoBmgJaA9DCFteud42Ew/AlIaUUpRoFUsyaBZHQJx92uB+Wnl1fZQoaAZoCWgPQwifq63YX9YKwJSGlFKUaBVLMmgWR0CcfZ+GGmDUdX2UKGgGaAloD0MIar5KPnYXDcCUhpRSlGgVSzJoFkdAnH8U/jbSJHV9lChoBmgJaA9DCMu8VdehWg7AlIaUUpRoFUsyaBZHQJx+0JqqOtJ1fZQoaAZoCWgPQwjjiLX4FIAQwJSGlFKUaBVLMmgWR0Ccfo/6O5rhdX2UKGgGaAloD0MIJT/iV6xBEMCUhpRSlGgVSzJoFkdAnH5UlNUOu3V9lChoBmgJaA9DCKg1zTtOERLAlIaUUpRoFUsyaBZHQJx/vPyCnP51fZQoaAZoCWgPQwjK3lLOF9sHwJSGlFKUaBVLMmgWR0Ccf3iUPhAGdX2UKGgGaAloD0MIN6rTgawXEcCUhpRSlGgVSzJoFkdAnH84D9wWFnV9lChoBmgJaA9DCJLn+j4cZBDAlIaUUpRoFUsyaBZHQJx+/Lr5ZbJ1fZQoaAZoCWgPQwijrrX3qWoIwJSGlFKUaBVLMmgWR0CcgGIHTqjadX2UKGgGaAloD0MIu0c2V83TEMCUhpRSlGgVSzJoFkdAnIAdrGipN3V9lChoBmgJaA9DCFBR9Sudrw/AlIaUUpRoFUsyaBZHQJx/3Q1JlJ91fZQoaAZoCWgPQwhvnX+77PcMwJSGlFKUaBVLMmgWR0Ccf6GqxTsIdX2UKGgGaAloD0MItJQsJ6FUGcCUhpRSlGgVSzJoFkdAnIELRSgoPXV9lChoBmgJaA9DCNffEoB/OhbAlIaUUpRoFUsyaBZHQJyAxuxbB451fZQoaAZoCWgPQwhf04OCUnQLwJSGlFKUaBVLMmgWR0CcgIZPl+3IdX2UKGgGaAloD0MIDcNHxJT4F8CUhpRSlGgVSzJoFkdAnIBK9GqgiHV9lChoBmgJaA9DCGd9yjFZnATAlIaUUpRoFUsyaBZHQJyBtsyi22J1fZQoaAZoCWgPQwgF3V7SGE0XwJSGlFKUaBVLMmgWR0CcgXJrcj7idX2UKGgGaAloD0MIJqjhW1iXDsCUhpRSlGgVSzJoFkdAnIExx1gYxnV9lChoBmgJaA9DCFNaf0sAXg/AlIaUUpRoFUsyaBZHQJyA9mTTvy91fZQoaAZoCWgPQwiRf2YQH9gMwJSGlFKUaBVLMmgWR0Ccgmfj0cwQdX2UKGgGaAloD0MIPJ8B9Wa0A8CUhpRSlGgVSzJoFkdAnIIjhHbypnV9lChoBmgJaA9DCJeL+E7MehLAlIaUUpRoFUsyaBZHQJyB4ubqhUR1fZQoaAZoCWgPQwhCQSlaudcIwJSGlFKUaBVLMmgWR0CcgaeE7GNrdX2UKGgGaAloD0MI4Lw48dXuC8CUhpRSlGgVSzJoFkdAnIMZpSJj2HV9lChoBmgJaA9DCONsOgK4KRHAlIaUUpRoFUsyaBZHQJyC1UYKpkx1fZQoaAZoCWgPQwjNP/omTcMQwJSGlFKUaBVLMmgWR0CcgpTJhfBvdX2UKGgGaAloD0MIaAWGrG51EMCUhpRSlGgVSzJoFkdAnIJZdnkDIXV9lChoBmgJaA9DCIPCoEyjqRPAlIaUUpRoFUsyaBZHQJyDxuuRs/J1fZQoaAZoCWgPQwj+f5wwYRQXwJSGlFKUaBVLMmgWR0Ccg4Kk2xY8dX2UKGgGaAloD0MIe6NWmL6XDMCUhpRSlGgVSzJoFkdAnINCKWLP2XV9lChoBmgJaA9DCL6DnziAHhHAlIaUUpRoFUsyaBZHQJyDBtMwlB11fZQoaAZoCWgPQwj3cp8cBQgFwJSGlFKUaBVLMmgWR0CchHJQcghbdX2UKGgGaAloD0MIStQLPs3JCsCUhpRSlGgVSzJoFkdAnIQt3jdYXHV9lChoBmgJaA9DCJZ5q65D9QrAlIaUUpRoFUsyaBZHQJyD7UAksz51fZQoaAZoCWgPQwi5izBFuZQRwJSGlFKUaBVLMmgWR0Ccg7He7+UAdX2UKGgGaAloD0MIzT/6Jk3TFsCUhpRSlGgVSzJoFkdAnIUhceKba3V9lChoBmgJaA9DCMCy0qQURBHAlIaUUpRoFUsyaBZHQJyE3Q2MsH11fZQoaAZoCWgPQwj6JeKt8x8UwJSGlFKUaBVLMmgWR0CchJxptaZAdX2UKGgGaAloD0MIS+XtCKflBcCUhpRSlGgVSzJoFkdAnIRhFmWdE3V9lChoBmgJaA9DCNcXCW059wrAlIaUUpRoFUsyaBZHQJyFzOGCZnd1fZQoaAZoCWgPQwhuwVJdwCsGwJSGlFKUaBVLMmgWR0CchYiaiKzidX2UKGgGaAloD0MIQnkfR3NED8CUhpRSlGgVSzJoFkdAnIVH9BKL9HV9lChoBmgJaA9DCFDkSdI1sw7AlIaUUpRoFUsyaBZHQJyFDIdU83d1fZQoaAZoCWgPQwhxAP2+f7MPwJSGlFKUaBVLMmgWR0CchnblijL0dX2UKGgGaAloD0MIwk1GlWEcFMCUhpRSlGgVSzJoFkdAnIYysKb8WXV9lChoBmgJaA9DCAbYR6euXAjAlIaUUpRoFUsyaBZHQJyF8hhYvFp1fZQoaAZoCWgPQwgwSWWKOcgAwJSGlFKUaBVLMmgWR0Cchba8Yht+dX2UKGgGaAloD0MIba0vEtryDsCUhpRSlGgVSzJoFkdAnIch73PAwnV9lChoBmgJaA9DCHBdMSO8PQbAlIaUUpRoFUsyaBZHQJyG3bVSXMR1fZQoaAZoCWgPQwi5/fLJiqEQwJSGlFKUaBVLMmgWR0Cchp0qpcX4dX2UKGgGaAloD0MIEOz4LxDkBsCUhpRSlGgVSzJoFkdAnIZhw++ueXV9lChoBmgJaA9DCNS4N79hwgbAlIaUUpRoFUsyaBZHQJyHz0Yj0MB1fZQoaAZoCWgPQwiXGwx1WAEKwJSGlFKUaBVLMmgWR0Cch4rjHXEqdX2UKGgGaAloD0MISWb1DrfDCMCUhpRSlGgVSzJoFkdAnIdKSHM2WXV9lChoBmgJaA9DCH2VfOwuMA/AlIaUUpRoFUsyaBZHQJyHDvRZ2ZB1fZQoaAZoCWgPQwithVlo55QSwJSGlFKUaBVLMmgWR0CciHjUNKAbdX2UKGgGaAloD0MIIjgu46YGF8CUhpRSlGgVSzJoFkdAnIg0btJFs3V9lChoBmgJaA9DCGDoEaPnlgjAlIaUUpRoFUsyaBZHQJyH88yN4qx1fZQoaAZoCWgPQwhR2ht8YSIQwJSGlFKUaBVLMmgWR0Cch7hhpg1FdX2UKGgGaAloD0MIZ9Km6h5JEcCUhpRSlGgVSzJoFkdAnIkiIP9UCXV9lChoBmgJaA9DCNl3RfC/dQbAlIaUUpRoFUsyaBZHQJyI3lr/Khd1fZQoaAZoCWgPQwijHTf8btoCwJSGlFKUaBVLMmgWR0CciJ3CsOoYdX2UKGgGaAloD0MIhsq/lleOD8CUhpRSlGgVSzJoFkdAnIhiWzF+/nV9lChoBmgJaA9DCFA25QrvAhfAlIaUUpRoFUsyaBZHQJyJ0DxLCep1fZQoaAZoCWgPQwgoDTUKSdYTwJSGlFKUaBVLMmgWR0CciYvQ4S6EdX2UKGgGaAloD0MIM6ZgjbMp+7+UhpRSlGgVSzJoFkdAnIlLOAy2yHV9lChoBmgJaA9DCLqkarsJXgfAlIaUUpRoFUsyaBZHQJyJD8uSOip1fZQoaAZoCWgPQwgkD0QWaeIIwJSGlFKUaBVLMmgWR0CcioHZsbeedX2UKGgGaAloD0MInQ35ZwZhFsCUhpRSlGgVSzJoFkdAnIo9cbBGhHV9lChoBmgJaA9DCJHyk2qfzv6/lIaUUpRoFUsyaBZHQJyJ/Npudf91fZQoaAZoCWgPQwixNPCjGlYPwJSGlFKUaBVLMmgWR0CcicFw1ivxdX2UKGgGaAloD0MI+84vStCfDsCUhpRSlGgVSzJoFkdAnIsxwuM+/3V9lChoBmgJaA9DCNrKS/4nfxHAlIaUUpRoFUsyaBZHQJyK7YqXnhd1fZQoaAZoCWgPQwgAcOzZcykSwJSGlFKUaBVLMmgWR0Cciqz1bqyGdX2UKGgGaAloD0MI3LdaJy4XFMCUhpRSlGgVSzJoFkdAnIpxjz7MxHV9lChoBmgJaA9DCL/xtWeWRBDAlIaUUpRoFUsyaBZHQJyL5D6WPcV1fZQoaAZoCWgPQwjDZoALsiUJwJSGlFKUaBVLMmgWR0Cci5/Vy3kQdX2UKGgGaAloD0MIM/rRcMp8DcCUhpRSlGgVSzJoFkdAnItfQnhKlHV9lChoBmgJaA9DCOHs1jIZ/hXAlIaUUpRoFUsyaBZHQJyLI+t8uz11fZQoaAZoCWgPQwjGUE60q7AHwJSGlFKUaBVLMmgWR0CcjJcnE2pAdX2UKGgGaAloD0MIM6MfDafMDcCUhpRSlGgVSzJoFkdAnIxS9EkSmXV9lChoBmgJaA9DCIekFkompwbAlIaUUpRoFUsyaBZHQJyMEmfGuLd1fZQoaAZoCWgPQwhZFkz8UQQTwJSGlFKUaBVLMmgWR0Cci9cWTHKfdX2UKGgGaAloD0MIjV4NUBqKBsCUhpRSlGgVSzJoFkdAnI1JC0F8onV9lChoBmgJaA9DCIVALnHkYQjAlIaUUpRoFUsyaBZHQJyNBNDc/MZ1fZQoaAZoCWgPQwgDX9Gt1xQSwJSGlFKUaBVLMmgWR0CcjMQr+YMOdX2UKGgGaAloD0MItixfl+GfDcCUhpRSlGgVSzJoFkdAnIyIzzmOl3V9lChoBmgJaA9DCMEdqFMe3RnAlIaUUpRoFUsyaBZHQJyN+aOPvKF1fZQoaAZoCWgPQwg90uC2tqAQwJSGlFKUaBVLMmgWR0CcjbU6PsAvdX2UKGgGaAloD0MIFyzVBbwsCcCUhpRSlGgVSzJoFkdAnI10nCwbEXV9lChoBmgJaA9DCL7aUZyjjgjAlIaUUpRoFUsyaBZHQJyNOTLW7OF1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 100000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "macOS-13.2.1-arm64-arm-64bit Darwin Kernel Version 22.3.0: Mon Jan 30 20:38:37 PST 2023; root:xnu-8792.81.3~2/RELEASE_ARM64_T6000", "Python": "3.8.13", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.0", "GPU Enabled": "False", "Numpy": "1.21.2", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
Binary file (859 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -3.822807007562369, "std_reward": 1.0350434913318647, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-04-24T21:20:46.680643"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ced1eebadab4a69c81ad6a16d9a11b4ccdfaa2e00fced5c71935a53c907f5fb8
|
3 |
+
size 2381
|