Upload PPO LunarLander-v2 trained agent
Browse files- README.md +37 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +95 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +7 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 244.85 +/- 21.82
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7efecf58f160>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7efecf58f1f0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7efecf58f280>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7efecf58f310>", "_build": "<function ActorCriticPolicy._build at 0x7efecf58f3a0>", "forward": "<function ActorCriticPolicy.forward at 0x7efecf58f430>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7efecf58f4c0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7efecf58f550>", "_predict": "<function ActorCriticPolicy._predict at 0x7efecf58f5e0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7efecf58f670>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7efecf58f700>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7efecf58f790>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7efecf5902c0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1679271826247537618, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAIpZmD5mlNs+MvAIvT6IkL7gEqA9TQs3vQAAAAAAAAAA5koYvT26Obk1Oak9q7eHPKdnRjvSz209AACAPwAAgD9TAzS+AUubvKZvAb3zEpi8K/EMPs3ocD0AAIA/AACAP4AoV75BZJO8ttc3u6dJf7l2iQQ+MjdlOgAAgD8AAIA/k/5nPsGKGr3th4+6QsY5Oaish74zR8o5AACAPwAAgD+N3Eq+W/aZvHLxBbnz9J23uykaPmIIPjgAAIA/AACAP5CBrz6x/BQ+Gm5FvlQwNr5E6tw8W0BKPQAAAAAAAAAADW1hPoezCb16S008+aB3PMRRdr7+Az49AACAPwAAgD/NNY49QSxPPsgfVL3TQ0q+q0ewO8+tprwAAAAAAAAAAK2qWT7b0vq8I/H0ugkZijm1gFq+rSYjOgAAgD8AAIA/mum0PrjHGz8GxA893PGMvt9F5T1Yxja9AAAAAAAAAACgghy+tUebP0gbVr6m4A2/V1sSvp70iLwAAAAAAAAAAFr5/z18Th0+G7udvZ+JSb5wwYO83l4VvAAAAAAAAAAAAIJ9vUh3/boQHL27dvACPINNSjwWQ++8AACAPwAAgD/DhoK+rpybP7ugF7/r7gC/5V6mvkFeyr0AAAAAAAAAAJNoTr4o5bi81Rqpu3GFGbrFciY+jTbzOgAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVYBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIylNW0/XBcECUhpRSlIwBbJRNTQGMAXSUR0Crz8phWo3rdX2UKGgGaAloD0MI4UVfQVqjcECUhpRSlGgVTaYBaBZHQKvQBTxXnyN1fZQoaAZoCWgPQwjGia92lHJgQJSGlFKUaBVN6ANoFkdAq9AXpljEvXV9lChoBmgJaA9DCDZ0sz9QJG9AlIaUUpRoFU0HAWgWR0Cr0OrVFx4qdX2UKGgGaAloD0MIWFnbFE99cECUhpRSlGgVTQ0BaBZHQKvQ+T6BRQ91fZQoaAZoCWgPQwi1UDI59dpxQJSGlFKUaBVNDQFoFkdAq9F18Rcu8XV9lChoBmgJaA9DCLqkaruJNXBAlIaUUpRoFU0LAWgWR0Cr0Ydwm3OOdX2UKGgGaAloD0MI2su201bObkCUhpRSlGgVTQoBaBZHQKvR4Zjx0+11fZQoaAZoCWgPQwiiJ2VSwyNyQJSGlFKUaBVNAQFoFkdAq9McWbgCOnV9lChoBmgJaA9DCCdMGM0KUXFAlIaUUpRoFU0bAWgWR0CsBbvovBacdX2UKGgGaAloD0MIvjJv1TXMcUCUhpRSlGgVTSUBaBZHQKwFy5+6RQt1fZQoaAZoCWgPQwg3jliLT55tQJSGlFKUaBVNNQFoFkdArAYgzFdcB3V9lChoBmgJaA9DCBReglMfV3JAlIaUUpRoFU1gAWgWR0CsBy2VNYbLdX2UKGgGaAloD0MIXHFxVO6rcUCUhpRSlGgVS/9oFkdArAcuv4dp7HV9lChoBmgJaA9DCPOPvkmT7HFAlIaUUpRoFU0PAWgWR0CsB51xCIDYdX2UKGgGaAloD0MIyxEykKdPcECUhpRSlGgVTRsBaBZHQKwHnied07t1fZQoaAZoCWgPQwhJ2SJpN3tsQJSGlFKUaBVNBQFoFkdArAg2dwvQGHV9lChoBmgJaA9DCKfK94zES25AlIaUUpRoFUv5aBZHQKwIc0Ltu1p1fZQoaAZoCWgPQwj76NSVT/hwQJSGlFKUaBVNBgFoFkdArAjIf2bobHV9lChoBmgJaA9DCMFz7+GSjW9AlIaUUpRoFUvvaBZHQKwJ8YplSTB1fZQoaAZoCWgPQwiEuHL2DitwQJSGlFKUaBVL9GgWR0CsC1w7DEWJdX2UKGgGaAloD0MII04n2Wo/YECUhpRSlGgVTegDaBZHQKwLq9QGfPJ1fZQoaAZoCWgPQwh8ndSX5RpxQJSGlFKUaBVL6WgWR0CsDOr4vexfdX2UKGgGaAloD0MIg9vawvPPYUCUhpRSlGgVTegDaBZHQKwNQToMa0h1fZQoaAZoCWgPQwi7mjxlNVRxQJSGlFKUaBVNKgFoFkdArA13KU3XI3V9lChoBmgJaA9DCGQe+YMB+mxAlIaUUpRoFU0MAWgWR0CsDdvv0AcUdX2UKGgGaAloD0MIBkzg1t30Q0CUhpRSlGgVS+NoFkdArA38rCm/FnV9lChoBmgJaA9DCGhAvRm1h3FAlIaUUpRoFU0LAWgWR0CsDkx1xKg7dX2UKGgGaAloD0MIhlRRvMoRcECUhpRSlGgVTRcBaBZHQKwOmQK8cuJ1fZQoaAZoCWgPQwgL7ZxmgWpMQJSGlFKUaBVL52gWR0CsDrd7WuoxdX2UKGgGaAloD0MIU1xV9t09cECUhpRSlGgVTQEBaBZHQKwO83S8an91fZQoaAZoCWgPQwgdc56x79pyQJSGlFKUaBVNowFoFkdArA/jKRuCPXV9lChoBmgJaA9DCE8IHXQJdnBAlIaUUpRoFUvuaBZHQKwQAZML4N91fZQoaAZoCWgPQwi6Lvzg/GlvQJSGlFKUaBVNFQFoFkdArBGKxoqTbHV9lChoBmgJaA9DCNycSgaAEW9AlIaUUpRoFU0FAWgWR0CsEk6kqMFVdX2UKGgGaAloD0MIcnDpmHN9b0CUhpRSlGgVS/xoFkdArBLO01IiDHV9lChoBmgJaA9DCP6d7dGbx3FAlIaUUpRoFUvxaBZHQKwS8Ik7fYV1fZQoaAZoCWgPQwgrhUAucXdyQJSGlFKUaBVNIQFoFkdArBMSYRdyDXV9lChoBmgJaA9DCDp6/N4mIGNAlIaUUpRoFU3oA2gWR0CsEybxusLfdX2UKGgGaAloD0MIFXDP86excECUhpRSlGgVTRcBaBZHQKwTZzJZGKB1fZQoaAZoCWgPQwgceSCySLRvQJSGlFKUaBVL/GgWR0CsE3SNfgJkdX2UKGgGaAloD0MIzVzg8piTcECUhpRSlGgVTQcBaBZHQKwTjfShJy11fZQoaAZoCWgPQwidmzbjNGxxQJSGlFKUaBVNNgFoFkdArBOXXoTwlXV9lChoBmgJaA9DCM3NN6L7QHBAlIaUUpRoFU0VAWgWR0CsFAIJRfnfdX2UKGgGaAloD0MIn8n+eZr1cECUhpRSlGgVS/VoFkdArBQqfL9uP3V9lChoBmgJaA9DCGEyVTDqBHBAlIaUUpRoFUv1aBZHQKwUPIwudwx1fZQoaAZoCWgPQwj2fThIyKxwQJSGlFKUaBVL8mgWR0CsFaZ4Oc2BdX2UKGgGaAloD0MI+6wyU9qGbkCUhpRSlGgVTQgBaBZHQKwW3OryUcJ1fZQoaAZoCWgPQwjXL9gNW/1xQJSGlFKUaBVL8mgWR0CsF1cRcu8LdX2UKGgGaAloD0MIHebLCzBZcUCUhpRSlGgVS/doFkdArBdc9fTkQ3V9lChoBmgJaA9DCExuFFnrem9AlIaUUpRoFU0AAWgWR0CsF2c3dbgTdX2UKGgGaAloD0MImG4Sg8BeVkCUhpRSlGgVTegDaBZHQKwXZ8Lront1fZQoaAZoCWgPQwgcmUf+4O9wQJSGlFKUaBVNEwFoFkdArBeaQkona3V9lChoBmgJaA9DCJhPVgyX7XBAlIaUUpRoFUvtaBZHQKwXqHymQ8x1fZQoaAZoCWgPQwi2ZcBZyi9vQJSGlFKUaBVL+GgWR0CsF69XtBv8dX2UKGgGaAloD0MI5+RFJuBlXUCUhpRSlGgVTegDaBZHQKwYGLa24NJ1fZQoaAZoCWgPQwi+UMB2MHFwQJSGlFKUaBVL82gWR0CsGFNHxz7udX2UKGgGaAloD0MIHHqLh3dhbkCUhpRSlGgVTSsBaBZHQKwYecwxnFp1fZQoaAZoCWgPQwggnE8da6hwQJSGlFKUaBVNCwFoFkdArBiEI7eVLXV9lChoBmgJaA9DCDyjrUoiW2xAlIaUUpRoFU0dAWgWR0CsGOyRKYiQdX2UKGgGaAloD0MIPu3w12SEb0CUhpRSlGgVTRcBaBZHQKwaJ5Pdl/Z1fZQoaAZoCWgPQwhKehhaXbFwQJSGlFKUaBVL62gWR0CsGuGseXAudX2UKGgGaAloD0MIwcQfRZ3vbkCUhpRSlGgVS/RoFkdArBsW0zCUHXV9lChoBmgJaA9DCEjDKXPzN29AlIaUUpRoFUvxaBZHQKwbP4YaYNR1fZQoaAZoCWgPQwho5zQLdLRwQJSGlFKUaBVNDAFoFkdArBtzVpblinV9lChoBmgJaA9DCI0o7Q2+w21AlIaUUpRoFUv7aBZHQKwbf/x2B8R1fZQoaAZoCWgPQwgXmus0ko5xQJSGlFKUaBVNEQFoFkdArBuX58BuGnV9lChoBmgJaA9DCAZLdQEvunFAlIaUUpRoFUvmaBZHQKwcCp97Wup1fZQoaAZoCWgPQwgNjLysic9uQJSGlFKUaBVNHwFoFkdArBwPfCQ9zXV9lChoBmgJaA9DCJQXmYCfonFAlIaUUpRoFU0LAWgWR0CsHC94mkWRdX2UKGgGaAloD0MIv7UTJSHzbkCUhpRSlGgVTQEBaBZHQKwcRowEhaF1fZQoaAZoCWgPQwilFd9QOPBxQJSGlFKUaBVL8WgWR0CsHLIKtxMndX2UKGgGaAloD0MINQnekMYIYkCUhpRSlGgVTegDaBZHQKwdhyOq//N1fZQoaAZoCWgPQwhmS1ZF+AVwQJSGlFKUaBVNFQFoFkdArB6KRW912nV9lChoBmgJaA9DCAWiJ2USanBAlIaUUpRoFUv1aBZHQKwet2L5ylx1fZQoaAZoCWgPQwhClZo9kFhxQJSGlFKUaBVNCAFoFkdArB9xtLteD3V9lChoBmgJaA9DCIo8Sbqm8XFAlIaUUpRoFU0FAWgWR0CsH6wqI7/5dX2UKGgGaAloD0MIO/4LBEGmcECUhpRSlGgVTQYBaBZHQKwfyQ7LdN51fZQoaAZoCWgPQwjyfXGpCtdwQJSGlFKUaBVL7WgWR0CsICMnAqNIdX2UKGgGaAloD0MIbqErEajrcECUhpRSlGgVS/xoFkdArCAjoKUmlnV9lChoBmgJaA9DCHZSX5b2DW5AlIaUUpRoFU0QAWgWR0CsIKbOeJ53dX2UKGgGaAloD0MI2Qqalhh2cUCUhpRSlGgVTSoBaBZHQKwhzwWnCO51fZQoaAZoCWgPQwhfCDnv/wtwQJSGlFKUaBVL+2gWR0CsI4Eiliz+dX2UKGgGaAloD0MIyLJg4o8RbkCUhpRSlGgVTQcBaBZHQKwjjKTSssB1fZQoaAZoCWgPQwhruwm+KbRwQJSGlFKUaBVL8mgWR0CsJI8PvrnldX2UKGgGaAloD0MI1Aypong+X0CUhpRSlGgVTegDaBZHQKwk2FVT72t1fZQoaAZoCWgPQwhUrBqEOcJsQJSGlFKUaBVL9mgWR0CsJXPVEuxsdX2UKGgGaAloD0MIxcn9DgVuckCUhpRSlGgVS+NoFkdArCW/u3MINXV9lChoBmgJaA9DCHh8e9egX25AlIaUUpRoFU1fAWgWR0CsJ3l7tzCDdX2UKGgGaAloD0MIS8gHPdu6cUCUhpRSlGgVTU4BaBZHQKwoDByCFsZ1fZQoaAZoCWgPQwj3H5kOnZRqQJSGlFKUaBVNYwFoFkdArCgb3AVO9HV9lChoBmgJaA9DCIApAwe0yW5AlIaUUpRoFU1GAWgWR0CsKpvCl7+ldX2UKGgGaAloD0MIYhOZucBSXECUhpRSlGgVTegDaBZHQKwqskOZssR1fZQoaAZoCWgPQwgVyOws+t9wQJSGlFKUaBVNDwFoFkdArCttjd56dHV9lChoBmgJaA9DCHAi+rX1Cm5AlIaUUpRoFU0BAWgWR0CsLD6oMrmRdX2UKGgGaAloD0MIQS5x5IHgbkCUhpRSlGgVS/1oFkdArCxjV+Zw43V9lChoBmgJaA9DCCsSE9RwH2JAlIaUUpRoFU3oA2gWR0CsLZUsWfsedX2UKGgGaAloD0MIP1OvWwQCaUCUhpRSlGgVTWUBaBZHQKwt+rwvxpd1fZQoaAZoCWgPQwjKiXYVUjRvQJSGlFKUaBVNDQFoFkdArC8OGRFI/nV9lChoBmgJaA9DCCHkvP8PnHBAlIaUUpRoFU1WAWgWR0CsL1qgyuZDdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 310, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:be6e183e98ffa7ee05486c6f3d1920dc1826438b7150d4fc4bf37f4047901f87
|
3 |
+
size 147384
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.7.0
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7efecf58f160>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7efecf58f1f0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7efecf58f280>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7efecf58f310>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7efecf58f3a0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7efecf58f430>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7efecf58f4c0>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7efecf58f550>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7efecf58f5e0>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7efecf58f670>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7efecf58f700>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7efecf58f790>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7efecf5902c0>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"observation_space": {
|
25 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
26 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
27 |
+
"dtype": "float32",
|
28 |
+
"_shape": [
|
29 |
+
8
|
30 |
+
],
|
31 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
32 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
33 |
+
"bounded_below": "[False False False False False False False False]",
|
34 |
+
"bounded_above": "[False False False False False False False False]",
|
35 |
+
"_np_random": null
|
36 |
+
},
|
37 |
+
"action_space": {
|
38 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
39 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
40 |
+
"n": 4,
|
41 |
+
"_shape": [],
|
42 |
+
"dtype": "int64",
|
43 |
+
"_np_random": null
|
44 |
+
},
|
45 |
+
"n_envs": 16,
|
46 |
+
"num_timesteps": 1015808,
|
47 |
+
"_total_timesteps": 1000000,
|
48 |
+
"_num_timesteps_at_start": 0,
|
49 |
+
"seed": null,
|
50 |
+
"action_noise": null,
|
51 |
+
"start_time": 1679271826247537618,
|
52 |
+
"learning_rate": 0.0003,
|
53 |
+
"tensorboard_log": null,
|
54 |
+
"lr_schedule": {
|
55 |
+
":type:": "<class 'function'>",
|
56 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
57 |
+
},
|
58 |
+
"_last_obs": {
|
59 |
+
":type:": "<class 'numpy.ndarray'>",
|
60 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAIpZmD5mlNs+MvAIvT6IkL7gEqA9TQs3vQAAAAAAAAAA5koYvT26Obk1Oak9q7eHPKdnRjvSz209AACAPwAAgD9TAzS+AUubvKZvAb3zEpi8K/EMPs3ocD0AAIA/AACAP4AoV75BZJO8ttc3u6dJf7l2iQQ+MjdlOgAAgD8AAIA/k/5nPsGKGr3th4+6QsY5Oaish74zR8o5AACAPwAAgD+N3Eq+W/aZvHLxBbnz9J23uykaPmIIPjgAAIA/AACAP5CBrz6x/BQ+Gm5FvlQwNr5E6tw8W0BKPQAAAAAAAAAADW1hPoezCb16S008+aB3PMRRdr7+Az49AACAPwAAgD/NNY49QSxPPsgfVL3TQ0q+q0ewO8+tprwAAAAAAAAAAK2qWT7b0vq8I/H0ugkZijm1gFq+rSYjOgAAgD8AAIA/mum0PrjHGz8GxA893PGMvt9F5T1Yxja9AAAAAAAAAACgghy+tUebP0gbVr6m4A2/V1sSvp70iLwAAAAAAAAAAFr5/z18Th0+G7udvZ+JSb5wwYO83l4VvAAAAAAAAAAAAIJ9vUh3/boQHL27dvACPINNSjwWQ++8AACAPwAAgD/DhoK+rpybP7ugF7/r7gC/5V6mvkFeyr0AAAAAAAAAAJNoTr4o5bi81Rqpu3GFGbrFciY+jTbzOgAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
61 |
+
},
|
62 |
+
"_last_episode_starts": {
|
63 |
+
":type:": "<class 'numpy.ndarray'>",
|
64 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
65 |
+
},
|
66 |
+
"_last_original_obs": null,
|
67 |
+
"_episode_num": 0,
|
68 |
+
"use_sde": false,
|
69 |
+
"sde_sample_freq": -1,
|
70 |
+
"_current_progress_remaining": -0.015808000000000044,
|
71 |
+
"ep_info_buffer": {
|
72 |
+
":type:": "<class 'collections.deque'>",
|
73 |
+
":serialized:": "gAWVYBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIylNW0/XBcECUhpRSlIwBbJRNTQGMAXSUR0Crz8phWo3rdX2UKGgGaAloD0MI4UVfQVqjcECUhpRSlGgVTaYBaBZHQKvQBTxXnyN1fZQoaAZoCWgPQwjGia92lHJgQJSGlFKUaBVN6ANoFkdAq9AXpljEvXV9lChoBmgJaA9DCDZ0sz9QJG9AlIaUUpRoFU0HAWgWR0Cr0OrVFx4qdX2UKGgGaAloD0MIWFnbFE99cECUhpRSlGgVTQ0BaBZHQKvQ+T6BRQ91fZQoaAZoCWgPQwi1UDI59dpxQJSGlFKUaBVNDQFoFkdAq9F18Rcu8XV9lChoBmgJaA9DCLqkaruJNXBAlIaUUpRoFU0LAWgWR0Cr0Ydwm3OOdX2UKGgGaAloD0MI2su201bObkCUhpRSlGgVTQoBaBZHQKvR4Zjx0+11fZQoaAZoCWgPQwiiJ2VSwyNyQJSGlFKUaBVNAQFoFkdAq9McWbgCOnV9lChoBmgJaA9DCCdMGM0KUXFAlIaUUpRoFU0bAWgWR0CsBbvovBacdX2UKGgGaAloD0MIvjJv1TXMcUCUhpRSlGgVTSUBaBZHQKwFy5+6RQt1fZQoaAZoCWgPQwg3jliLT55tQJSGlFKUaBVNNQFoFkdArAYgzFdcB3V9lChoBmgJaA9DCBReglMfV3JAlIaUUpRoFU1gAWgWR0CsBy2VNYbLdX2UKGgGaAloD0MIXHFxVO6rcUCUhpRSlGgVS/9oFkdArAcuv4dp7HV9lChoBmgJaA9DCPOPvkmT7HFAlIaUUpRoFU0PAWgWR0CsB51xCIDYdX2UKGgGaAloD0MIyxEykKdPcECUhpRSlGgVTRsBaBZHQKwHnied07t1fZQoaAZoCWgPQwhJ2SJpN3tsQJSGlFKUaBVNBQFoFkdArAg2dwvQGHV9lChoBmgJaA9DCKfK94zES25AlIaUUpRoFUv5aBZHQKwIc0Ltu1p1fZQoaAZoCWgPQwj76NSVT/hwQJSGlFKUaBVNBgFoFkdArAjIf2bobHV9lChoBmgJaA9DCMFz7+GSjW9AlIaUUpRoFUvvaBZHQKwJ8YplSTB1fZQoaAZoCWgPQwiEuHL2DitwQJSGlFKUaBVL9GgWR0CsC1w7DEWJdX2UKGgGaAloD0MII04n2Wo/YECUhpRSlGgVTegDaBZHQKwLq9QGfPJ1fZQoaAZoCWgPQwh8ndSX5RpxQJSGlFKUaBVL6WgWR0CsDOr4vexfdX2UKGgGaAloD0MIg9vawvPPYUCUhpRSlGgVTegDaBZHQKwNQToMa0h1fZQoaAZoCWgPQwi7mjxlNVRxQJSGlFKUaBVNKgFoFkdArA13KU3XI3V9lChoBmgJaA9DCGQe+YMB+mxAlIaUUpRoFU0MAWgWR0CsDdvv0AcUdX2UKGgGaAloD0MIBkzg1t30Q0CUhpRSlGgVS+NoFkdArA38rCm/FnV9lChoBmgJaA9DCGhAvRm1h3FAlIaUUpRoFU0LAWgWR0CsDkx1xKg7dX2UKGgGaAloD0MIhlRRvMoRcECUhpRSlGgVTRcBaBZHQKwOmQK8cuJ1fZQoaAZoCWgPQwgL7ZxmgWpMQJSGlFKUaBVL52gWR0CsDrd7WuoxdX2UKGgGaAloD0MIU1xV9t09cECUhpRSlGgVTQEBaBZHQKwO83S8an91fZQoaAZoCWgPQwgdc56x79pyQJSGlFKUaBVNowFoFkdArA/jKRuCPXV9lChoBmgJaA9DCE8IHXQJdnBAlIaUUpRoFUvuaBZHQKwQAZML4N91fZQoaAZoCWgPQwi6Lvzg/GlvQJSGlFKUaBVNFQFoFkdArBGKxoqTbHV9lChoBmgJaA9DCNycSgaAEW9AlIaUUpRoFU0FAWgWR0CsEk6kqMFVdX2UKGgGaAloD0MIcnDpmHN9b0CUhpRSlGgVS/xoFkdArBLO01IiDHV9lChoBmgJaA9DCP6d7dGbx3FAlIaUUpRoFUvxaBZHQKwS8Ik7fYV1fZQoaAZoCWgPQwgrhUAucXdyQJSGlFKUaBVNIQFoFkdArBMSYRdyDXV9lChoBmgJaA9DCDp6/N4mIGNAlIaUUpRoFU3oA2gWR0CsEybxusLfdX2UKGgGaAloD0MIFXDP86excECUhpRSlGgVTRcBaBZHQKwTZzJZGKB1fZQoaAZoCWgPQwgceSCySLRvQJSGlFKUaBVL/GgWR0CsE3SNfgJkdX2UKGgGaAloD0MIzVzg8piTcECUhpRSlGgVTQcBaBZHQKwTjfShJy11fZQoaAZoCWgPQwidmzbjNGxxQJSGlFKUaBVNNgFoFkdArBOXXoTwlXV9lChoBmgJaA9DCM3NN6L7QHBAlIaUUpRoFU0VAWgWR0CsFAIJRfnfdX2UKGgGaAloD0MIn8n+eZr1cECUhpRSlGgVS/VoFkdArBQqfL9uP3V9lChoBmgJaA9DCGEyVTDqBHBAlIaUUpRoFUv1aBZHQKwUPIwudwx1fZQoaAZoCWgPQwj2fThIyKxwQJSGlFKUaBVL8mgWR0CsFaZ4Oc2BdX2UKGgGaAloD0MI+6wyU9qGbkCUhpRSlGgVTQgBaBZHQKwW3OryUcJ1fZQoaAZoCWgPQwjXL9gNW/1xQJSGlFKUaBVL8mgWR0CsF1cRcu8LdX2UKGgGaAloD0MIHebLCzBZcUCUhpRSlGgVS/doFkdArBdc9fTkQ3V9lChoBmgJaA9DCExuFFnrem9AlIaUUpRoFU0AAWgWR0CsF2c3dbgTdX2UKGgGaAloD0MImG4Sg8BeVkCUhpRSlGgVTegDaBZHQKwXZ8Lront1fZQoaAZoCWgPQwgcmUf+4O9wQJSGlFKUaBVNEwFoFkdArBeaQkona3V9lChoBmgJaA9DCJhPVgyX7XBAlIaUUpRoFUvtaBZHQKwXqHymQ8x1fZQoaAZoCWgPQwi2ZcBZyi9vQJSGlFKUaBVL+GgWR0CsF69XtBv8dX2UKGgGaAloD0MI5+RFJuBlXUCUhpRSlGgVTegDaBZHQKwYGLa24NJ1fZQoaAZoCWgPQwi+UMB2MHFwQJSGlFKUaBVL82gWR0CsGFNHxz7udX2UKGgGaAloD0MIHHqLh3dhbkCUhpRSlGgVTSsBaBZHQKwYecwxnFp1fZQoaAZoCWgPQwggnE8da6hwQJSGlFKUaBVNCwFoFkdArBiEI7eVLXV9lChoBmgJaA9DCDyjrUoiW2xAlIaUUpRoFU0dAWgWR0CsGOyRKYiQdX2UKGgGaAloD0MIPu3w12SEb0CUhpRSlGgVTRcBaBZHQKwaJ5Pdl/Z1fZQoaAZoCWgPQwhKehhaXbFwQJSGlFKUaBVL62gWR0CsGuGseXAudX2UKGgGaAloD0MIwcQfRZ3vbkCUhpRSlGgVS/RoFkdArBsW0zCUHXV9lChoBmgJaA9DCEjDKXPzN29AlIaUUpRoFUvxaBZHQKwbP4YaYNR1fZQoaAZoCWgPQwho5zQLdLRwQJSGlFKUaBVNDAFoFkdArBtzVpblinV9lChoBmgJaA9DCI0o7Q2+w21AlIaUUpRoFUv7aBZHQKwbf/x2B8R1fZQoaAZoCWgPQwgXmus0ko5xQJSGlFKUaBVNEQFoFkdArBuX58BuGnV9lChoBmgJaA9DCAZLdQEvunFAlIaUUpRoFUvmaBZHQKwcCp97Wup1fZQoaAZoCWgPQwgNjLysic9uQJSGlFKUaBVNHwFoFkdArBwPfCQ9zXV9lChoBmgJaA9DCJQXmYCfonFAlIaUUpRoFU0LAWgWR0CsHC94mkWRdX2UKGgGaAloD0MIv7UTJSHzbkCUhpRSlGgVTQEBaBZHQKwcRowEhaF1fZQoaAZoCWgPQwilFd9QOPBxQJSGlFKUaBVL8WgWR0CsHLIKtxMndX2UKGgGaAloD0MINQnekMYIYkCUhpRSlGgVTegDaBZHQKwdhyOq//N1fZQoaAZoCWgPQwhmS1ZF+AVwQJSGlFKUaBVNFQFoFkdArB6KRW912nV9lChoBmgJaA9DCAWiJ2USanBAlIaUUpRoFUv1aBZHQKwet2L5ylx1fZQoaAZoCWgPQwhClZo9kFhxQJSGlFKUaBVNCAFoFkdArB9xtLteD3V9lChoBmgJaA9DCIo8Sbqm8XFAlIaUUpRoFU0FAWgWR0CsH6wqI7/5dX2UKGgGaAloD0MIO/4LBEGmcECUhpRSlGgVTQYBaBZHQKwfyQ7LdN51fZQoaAZoCWgPQwjyfXGpCtdwQJSGlFKUaBVL7WgWR0CsICMnAqNIdX2UKGgGaAloD0MIbqErEajrcECUhpRSlGgVS/xoFkdArCAjoKUmlnV9lChoBmgJaA9DCHZSX5b2DW5AlIaUUpRoFU0QAWgWR0CsIKbOeJ53dX2UKGgGaAloD0MI2Qqalhh2cUCUhpRSlGgVTSoBaBZHQKwhzwWnCO51fZQoaAZoCWgPQwhfCDnv/wtwQJSGlFKUaBVL+2gWR0CsI4Eiliz+dX2UKGgGaAloD0MIyLJg4o8RbkCUhpRSlGgVTQcBaBZHQKwjjKTSssB1fZQoaAZoCWgPQwhruwm+KbRwQJSGlFKUaBVL8mgWR0CsJI8PvrnldX2UKGgGaAloD0MI1Aypong+X0CUhpRSlGgVTegDaBZHQKwk2FVT72t1fZQoaAZoCWgPQwhUrBqEOcJsQJSGlFKUaBVL9mgWR0CsJXPVEuxsdX2UKGgGaAloD0MIxcn9DgVuckCUhpRSlGgVS+NoFkdArCW/u3MINXV9lChoBmgJaA9DCHh8e9egX25AlIaUUpRoFU1fAWgWR0CsJ3l7tzCDdX2UKGgGaAloD0MIS8gHPdu6cUCUhpRSlGgVTU4BaBZHQKwoDByCFsZ1fZQoaAZoCWgPQwj3H5kOnZRqQJSGlFKUaBVNYwFoFkdArCgb3AVO9HV9lChoBmgJaA9DCIApAwe0yW5AlIaUUpRoFU1GAWgWR0CsKpvCl7+ldX2UKGgGaAloD0MIYhOZucBSXECUhpRSlGgVTegDaBZHQKwqskOZssR1fZQoaAZoCWgPQwgVyOws+t9wQJSGlFKUaBVNDwFoFkdArCttjd56dHV9lChoBmgJaA9DCHAi+rX1Cm5AlIaUUpRoFU0BAWgWR0CsLD6oMrmRdX2UKGgGaAloD0MIQS5x5IHgbkCUhpRSlGgVS/1oFkdArCxjV+Zw43V9lChoBmgJaA9DCCsSE9RwH2JAlIaUUpRoFU3oA2gWR0CsLZUsWfsedX2UKGgGaAloD0MIP1OvWwQCaUCUhpRSlGgVTWUBaBZHQKwt+rwvxpd1fZQoaAZoCWgPQwjKiXYVUjRvQJSGlFKUaBVNDQFoFkdArC8OGRFI/nV9lChoBmgJaA9DCCHkvP8PnHBAlIaUUpRoFU1WAWgWR0CsL1qgyuZDdWUu"
|
74 |
+
},
|
75 |
+
"ep_success_buffer": {
|
76 |
+
":type:": "<class 'collections.deque'>",
|
77 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
78 |
+
},
|
79 |
+
"_n_updates": 310,
|
80 |
+
"n_steps": 2048,
|
81 |
+
"gamma": 0.99,
|
82 |
+
"gae_lambda": 0.95,
|
83 |
+
"ent_coef": 0.0,
|
84 |
+
"vf_coef": 0.5,
|
85 |
+
"max_grad_norm": 0.5,
|
86 |
+
"batch_size": 64,
|
87 |
+
"n_epochs": 10,
|
88 |
+
"clip_range": {
|
89 |
+
":type:": "<class 'function'>",
|
90 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
91 |
+
},
|
92 |
+
"clip_range_vf": null,
|
93 |
+
"normalize_advantage": true,
|
94 |
+
"target_kl": null
|
95 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:42b9a11a54d2cd6b61e91e44c40f7040498f26a353fbd18a1120f613c2a16cae
|
3 |
+
size 87929
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d0085afebd1fe06ae4d23a535642315d3d7a7c2e1cdfb0ddf91457abdbba85db
|
3 |
+
size 43393
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.9.16
|
3 |
+
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 1.13.1+cu116
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.22.4
|
7 |
+
- Gym: 0.21.0
|
replay.mp4
ADDED
Binary file (206 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 244.85253424121802, "std_reward": 21.824352562825588, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-20T01:33:11.820639"}
|