ItchyB commited on
Commit
4ebeeca
1 Parent(s): 9a8dd44

Upload PPO LunarLander-v2 trained agent

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 244.85 +/- 21.82
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7efecf58f160>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7efecf58f1f0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7efecf58f280>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7efecf58f310>", "_build": "<function ActorCriticPolicy._build at 0x7efecf58f3a0>", "forward": "<function ActorCriticPolicy.forward at 0x7efecf58f430>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7efecf58f4c0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7efecf58f550>", "_predict": "<function ActorCriticPolicy._predict at 0x7efecf58f5e0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7efecf58f670>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7efecf58f700>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7efecf58f790>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7efecf5902c0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1679271826247537618, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAIpZmD5mlNs+MvAIvT6IkL7gEqA9TQs3vQAAAAAAAAAA5koYvT26Obk1Oak9q7eHPKdnRjvSz209AACAPwAAgD9TAzS+AUubvKZvAb3zEpi8K/EMPs3ocD0AAIA/AACAP4AoV75BZJO8ttc3u6dJf7l2iQQ+MjdlOgAAgD8AAIA/k/5nPsGKGr3th4+6QsY5Oaish74zR8o5AACAPwAAgD+N3Eq+W/aZvHLxBbnz9J23uykaPmIIPjgAAIA/AACAP5CBrz6x/BQ+Gm5FvlQwNr5E6tw8W0BKPQAAAAAAAAAADW1hPoezCb16S008+aB3PMRRdr7+Az49AACAPwAAgD/NNY49QSxPPsgfVL3TQ0q+q0ewO8+tprwAAAAAAAAAAK2qWT7b0vq8I/H0ugkZijm1gFq+rSYjOgAAgD8AAIA/mum0PrjHGz8GxA893PGMvt9F5T1Yxja9AAAAAAAAAACgghy+tUebP0gbVr6m4A2/V1sSvp70iLwAAAAAAAAAAFr5/z18Th0+G7udvZ+JSb5wwYO83l4VvAAAAAAAAAAAAIJ9vUh3/boQHL27dvACPINNSjwWQ++8AACAPwAAgD/DhoK+rpybP7ugF7/r7gC/5V6mvkFeyr0AAAAAAAAAAJNoTr4o5bi81Rqpu3GFGbrFciY+jTbzOgAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVYBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIylNW0/XBcECUhpRSlIwBbJRNTQGMAXSUR0Crz8phWo3rdX2UKGgGaAloD0MI4UVfQVqjcECUhpRSlGgVTaYBaBZHQKvQBTxXnyN1fZQoaAZoCWgPQwjGia92lHJgQJSGlFKUaBVN6ANoFkdAq9AXpljEvXV9lChoBmgJaA9DCDZ0sz9QJG9AlIaUUpRoFU0HAWgWR0Cr0OrVFx4qdX2UKGgGaAloD0MIWFnbFE99cECUhpRSlGgVTQ0BaBZHQKvQ+T6BRQ91fZQoaAZoCWgPQwi1UDI59dpxQJSGlFKUaBVNDQFoFkdAq9F18Rcu8XV9lChoBmgJaA9DCLqkaruJNXBAlIaUUpRoFU0LAWgWR0Cr0Ydwm3OOdX2UKGgGaAloD0MI2su201bObkCUhpRSlGgVTQoBaBZHQKvR4Zjx0+11fZQoaAZoCWgPQwiiJ2VSwyNyQJSGlFKUaBVNAQFoFkdAq9McWbgCOnV9lChoBmgJaA9DCCdMGM0KUXFAlIaUUpRoFU0bAWgWR0CsBbvovBacdX2UKGgGaAloD0MIvjJv1TXMcUCUhpRSlGgVTSUBaBZHQKwFy5+6RQt1fZQoaAZoCWgPQwg3jliLT55tQJSGlFKUaBVNNQFoFkdArAYgzFdcB3V9lChoBmgJaA9DCBReglMfV3JAlIaUUpRoFU1gAWgWR0CsBy2VNYbLdX2UKGgGaAloD0MIXHFxVO6rcUCUhpRSlGgVS/9oFkdArAcuv4dp7HV9lChoBmgJaA9DCPOPvkmT7HFAlIaUUpRoFU0PAWgWR0CsB51xCIDYdX2UKGgGaAloD0MIyxEykKdPcECUhpRSlGgVTRsBaBZHQKwHnied07t1fZQoaAZoCWgPQwhJ2SJpN3tsQJSGlFKUaBVNBQFoFkdArAg2dwvQGHV9lChoBmgJaA9DCKfK94zES25AlIaUUpRoFUv5aBZHQKwIc0Ltu1p1fZQoaAZoCWgPQwj76NSVT/hwQJSGlFKUaBVNBgFoFkdArAjIf2bobHV9lChoBmgJaA9DCMFz7+GSjW9AlIaUUpRoFUvvaBZHQKwJ8YplSTB1fZQoaAZoCWgPQwiEuHL2DitwQJSGlFKUaBVL9GgWR0CsC1w7DEWJdX2UKGgGaAloD0MII04n2Wo/YECUhpRSlGgVTegDaBZHQKwLq9QGfPJ1fZQoaAZoCWgPQwh8ndSX5RpxQJSGlFKUaBVL6WgWR0CsDOr4vexfdX2UKGgGaAloD0MIg9vawvPPYUCUhpRSlGgVTegDaBZHQKwNQToMa0h1fZQoaAZoCWgPQwi7mjxlNVRxQJSGlFKUaBVNKgFoFkdArA13KU3XI3V9lChoBmgJaA9DCGQe+YMB+mxAlIaUUpRoFU0MAWgWR0CsDdvv0AcUdX2UKGgGaAloD0MIBkzg1t30Q0CUhpRSlGgVS+NoFkdArA38rCm/FnV9lChoBmgJaA9DCGhAvRm1h3FAlIaUUpRoFU0LAWgWR0CsDkx1xKg7dX2UKGgGaAloD0MIhlRRvMoRcECUhpRSlGgVTRcBaBZHQKwOmQK8cuJ1fZQoaAZoCWgPQwgL7ZxmgWpMQJSGlFKUaBVL52gWR0CsDrd7WuoxdX2UKGgGaAloD0MIU1xV9t09cECUhpRSlGgVTQEBaBZHQKwO83S8an91fZQoaAZoCWgPQwgdc56x79pyQJSGlFKUaBVNowFoFkdArA/jKRuCPXV9lChoBmgJaA9DCE8IHXQJdnBAlIaUUpRoFUvuaBZHQKwQAZML4N91fZQoaAZoCWgPQwi6Lvzg/GlvQJSGlFKUaBVNFQFoFkdArBGKxoqTbHV9lChoBmgJaA9DCNycSgaAEW9AlIaUUpRoFU0FAWgWR0CsEk6kqMFVdX2UKGgGaAloD0MIcnDpmHN9b0CUhpRSlGgVS/xoFkdArBLO01IiDHV9lChoBmgJaA9DCP6d7dGbx3FAlIaUUpRoFUvxaBZHQKwS8Ik7fYV1fZQoaAZoCWgPQwgrhUAucXdyQJSGlFKUaBVNIQFoFkdArBMSYRdyDXV9lChoBmgJaA9DCDp6/N4mIGNAlIaUUpRoFU3oA2gWR0CsEybxusLfdX2UKGgGaAloD0MIFXDP86excECUhpRSlGgVTRcBaBZHQKwTZzJZGKB1fZQoaAZoCWgPQwgceSCySLRvQJSGlFKUaBVL/GgWR0CsE3SNfgJkdX2UKGgGaAloD0MIzVzg8piTcECUhpRSlGgVTQcBaBZHQKwTjfShJy11fZQoaAZoCWgPQwidmzbjNGxxQJSGlFKUaBVNNgFoFkdArBOXXoTwlXV9lChoBmgJaA9DCM3NN6L7QHBAlIaUUpRoFU0VAWgWR0CsFAIJRfnfdX2UKGgGaAloD0MIn8n+eZr1cECUhpRSlGgVS/VoFkdArBQqfL9uP3V9lChoBmgJaA9DCGEyVTDqBHBAlIaUUpRoFUv1aBZHQKwUPIwudwx1fZQoaAZoCWgPQwj2fThIyKxwQJSGlFKUaBVL8mgWR0CsFaZ4Oc2BdX2UKGgGaAloD0MI+6wyU9qGbkCUhpRSlGgVTQgBaBZHQKwW3OryUcJ1fZQoaAZoCWgPQwjXL9gNW/1xQJSGlFKUaBVL8mgWR0CsF1cRcu8LdX2UKGgGaAloD0MIHebLCzBZcUCUhpRSlGgVS/doFkdArBdc9fTkQ3V9lChoBmgJaA9DCExuFFnrem9AlIaUUpRoFU0AAWgWR0CsF2c3dbgTdX2UKGgGaAloD0MImG4Sg8BeVkCUhpRSlGgVTegDaBZHQKwXZ8Lront1fZQoaAZoCWgPQwgcmUf+4O9wQJSGlFKUaBVNEwFoFkdArBeaQkona3V9lChoBmgJaA9DCJhPVgyX7XBAlIaUUpRoFUvtaBZHQKwXqHymQ8x1fZQoaAZoCWgPQwi2ZcBZyi9vQJSGlFKUaBVL+GgWR0CsF69XtBv8dX2UKGgGaAloD0MI5+RFJuBlXUCUhpRSlGgVTegDaBZHQKwYGLa24NJ1fZQoaAZoCWgPQwi+UMB2MHFwQJSGlFKUaBVL82gWR0CsGFNHxz7udX2UKGgGaAloD0MIHHqLh3dhbkCUhpRSlGgVTSsBaBZHQKwYecwxnFp1fZQoaAZoCWgPQwggnE8da6hwQJSGlFKUaBVNCwFoFkdArBiEI7eVLXV9lChoBmgJaA9DCDyjrUoiW2xAlIaUUpRoFU0dAWgWR0CsGOyRKYiQdX2UKGgGaAloD0MIPu3w12SEb0CUhpRSlGgVTRcBaBZHQKwaJ5Pdl/Z1fZQoaAZoCWgPQwhKehhaXbFwQJSGlFKUaBVL62gWR0CsGuGseXAudX2UKGgGaAloD0MIwcQfRZ3vbkCUhpRSlGgVS/RoFkdArBsW0zCUHXV9lChoBmgJaA9DCEjDKXPzN29AlIaUUpRoFUvxaBZHQKwbP4YaYNR1fZQoaAZoCWgPQwho5zQLdLRwQJSGlFKUaBVNDAFoFkdArBtzVpblinV9lChoBmgJaA9DCI0o7Q2+w21AlIaUUpRoFUv7aBZHQKwbf/x2B8R1fZQoaAZoCWgPQwgXmus0ko5xQJSGlFKUaBVNEQFoFkdArBuX58BuGnV9lChoBmgJaA9DCAZLdQEvunFAlIaUUpRoFUvmaBZHQKwcCp97Wup1fZQoaAZoCWgPQwgNjLysic9uQJSGlFKUaBVNHwFoFkdArBwPfCQ9zXV9lChoBmgJaA9DCJQXmYCfonFAlIaUUpRoFU0LAWgWR0CsHC94mkWRdX2UKGgGaAloD0MIv7UTJSHzbkCUhpRSlGgVTQEBaBZHQKwcRowEhaF1fZQoaAZoCWgPQwilFd9QOPBxQJSGlFKUaBVL8WgWR0CsHLIKtxMndX2UKGgGaAloD0MINQnekMYIYkCUhpRSlGgVTegDaBZHQKwdhyOq//N1fZQoaAZoCWgPQwhmS1ZF+AVwQJSGlFKUaBVNFQFoFkdArB6KRW912nV9lChoBmgJaA9DCAWiJ2USanBAlIaUUpRoFUv1aBZHQKwet2L5ylx1fZQoaAZoCWgPQwhClZo9kFhxQJSGlFKUaBVNCAFoFkdArB9xtLteD3V9lChoBmgJaA9DCIo8Sbqm8XFAlIaUUpRoFU0FAWgWR0CsH6wqI7/5dX2UKGgGaAloD0MIO/4LBEGmcECUhpRSlGgVTQYBaBZHQKwfyQ7LdN51fZQoaAZoCWgPQwjyfXGpCtdwQJSGlFKUaBVL7WgWR0CsICMnAqNIdX2UKGgGaAloD0MIbqErEajrcECUhpRSlGgVS/xoFkdArCAjoKUmlnV9lChoBmgJaA9DCHZSX5b2DW5AlIaUUpRoFU0QAWgWR0CsIKbOeJ53dX2UKGgGaAloD0MI2Qqalhh2cUCUhpRSlGgVTSoBaBZHQKwhzwWnCO51fZQoaAZoCWgPQwhfCDnv/wtwQJSGlFKUaBVL+2gWR0CsI4Eiliz+dX2UKGgGaAloD0MIyLJg4o8RbkCUhpRSlGgVTQcBaBZHQKwjjKTSssB1fZQoaAZoCWgPQwhruwm+KbRwQJSGlFKUaBVL8mgWR0CsJI8PvrnldX2UKGgGaAloD0MI1Aypong+X0CUhpRSlGgVTegDaBZHQKwk2FVT72t1fZQoaAZoCWgPQwhUrBqEOcJsQJSGlFKUaBVL9mgWR0CsJXPVEuxsdX2UKGgGaAloD0MIxcn9DgVuckCUhpRSlGgVS+NoFkdArCW/u3MINXV9lChoBmgJaA9DCHh8e9egX25AlIaUUpRoFU1fAWgWR0CsJ3l7tzCDdX2UKGgGaAloD0MIS8gHPdu6cUCUhpRSlGgVTU4BaBZHQKwoDByCFsZ1fZQoaAZoCWgPQwj3H5kOnZRqQJSGlFKUaBVNYwFoFkdArCgb3AVO9HV9lChoBmgJaA9DCIApAwe0yW5AlIaUUpRoFU1GAWgWR0CsKpvCl7+ldX2UKGgGaAloD0MIYhOZucBSXECUhpRSlGgVTegDaBZHQKwqskOZssR1fZQoaAZoCWgPQwgVyOws+t9wQJSGlFKUaBVNDwFoFkdArCttjd56dHV9lChoBmgJaA9DCHAi+rX1Cm5AlIaUUpRoFU0BAWgWR0CsLD6oMrmRdX2UKGgGaAloD0MIQS5x5IHgbkCUhpRSlGgVS/1oFkdArCxjV+Zw43V9lChoBmgJaA9DCCsSE9RwH2JAlIaUUpRoFU3oA2gWR0CsLZUsWfsedX2UKGgGaAloD0MIP1OvWwQCaUCUhpRSlGgVTWUBaBZHQKwt+rwvxpd1fZQoaAZoCWgPQwjKiXYVUjRvQJSGlFKUaBVNDQFoFkdArC8OGRFI/nV9lChoBmgJaA9DCCHkvP8PnHBAlIaUUpRoFU1WAWgWR0CsL1qgyuZDdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 310, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:be6e183e98ffa7ee05486c6f3d1920dc1826438b7150d4fc4bf37f4047901f87
3
+ size 147384
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,95 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7efecf58f160>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7efecf58f1f0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7efecf58f280>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7efecf58f310>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7efecf58f3a0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7efecf58f430>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7efecf58f4c0>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7efecf58f550>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7efecf58f5e0>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7efecf58f670>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7efecf58f700>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7efecf58f790>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7efecf5902c0>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "observation_space": {
25
+ ":type:": "<class 'gym.spaces.box.Box'>",
26
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
27
+ "dtype": "float32",
28
+ "_shape": [
29
+ 8
30
+ ],
31
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
32
+ "high": "[inf inf inf inf inf inf inf inf]",
33
+ "bounded_below": "[False False False False False False False False]",
34
+ "bounded_above": "[False False False False False False False False]",
35
+ "_np_random": null
36
+ },
37
+ "action_space": {
38
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
39
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
40
+ "n": 4,
41
+ "_shape": [],
42
+ "dtype": "int64",
43
+ "_np_random": null
44
+ },
45
+ "n_envs": 16,
46
+ "num_timesteps": 1015808,
47
+ "_total_timesteps": 1000000,
48
+ "_num_timesteps_at_start": 0,
49
+ "seed": null,
50
+ "action_noise": null,
51
+ "start_time": 1679271826247537618,
52
+ "learning_rate": 0.0003,
53
+ "tensorboard_log": null,
54
+ "lr_schedule": {
55
+ ":type:": "<class 'function'>",
56
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
57
+ },
58
+ "_last_obs": {
59
+ ":type:": "<class 'numpy.ndarray'>",
60
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAIpZmD5mlNs+MvAIvT6IkL7gEqA9TQs3vQAAAAAAAAAA5koYvT26Obk1Oak9q7eHPKdnRjvSz209AACAPwAAgD9TAzS+AUubvKZvAb3zEpi8K/EMPs3ocD0AAIA/AACAP4AoV75BZJO8ttc3u6dJf7l2iQQ+MjdlOgAAgD8AAIA/k/5nPsGKGr3th4+6QsY5Oaish74zR8o5AACAPwAAgD+N3Eq+W/aZvHLxBbnz9J23uykaPmIIPjgAAIA/AACAP5CBrz6x/BQ+Gm5FvlQwNr5E6tw8W0BKPQAAAAAAAAAADW1hPoezCb16S008+aB3PMRRdr7+Az49AACAPwAAgD/NNY49QSxPPsgfVL3TQ0q+q0ewO8+tprwAAAAAAAAAAK2qWT7b0vq8I/H0ugkZijm1gFq+rSYjOgAAgD8AAIA/mum0PrjHGz8GxA893PGMvt9F5T1Yxja9AAAAAAAAAACgghy+tUebP0gbVr6m4A2/V1sSvp70iLwAAAAAAAAAAFr5/z18Th0+G7udvZ+JSb5wwYO83l4VvAAAAAAAAAAAAIJ9vUh3/boQHL27dvACPINNSjwWQ++8AACAPwAAgD/DhoK+rpybP7ugF7/r7gC/5V6mvkFeyr0AAAAAAAAAAJNoTr4o5bi81Rqpu3GFGbrFciY+jTbzOgAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
61
+ },
62
+ "_last_episode_starts": {
63
+ ":type:": "<class 'numpy.ndarray'>",
64
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
65
+ },
66
+ "_last_original_obs": null,
67
+ "_episode_num": 0,
68
+ "use_sde": false,
69
+ "sde_sample_freq": -1,
70
+ "_current_progress_remaining": -0.015808000000000044,
71
+ "ep_info_buffer": {
72
+ ":type:": "<class 'collections.deque'>",
73
+ ":serialized:": "gAWVYBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIylNW0/XBcECUhpRSlIwBbJRNTQGMAXSUR0Crz8phWo3rdX2UKGgGaAloD0MI4UVfQVqjcECUhpRSlGgVTaYBaBZHQKvQBTxXnyN1fZQoaAZoCWgPQwjGia92lHJgQJSGlFKUaBVN6ANoFkdAq9AXpljEvXV9lChoBmgJaA9DCDZ0sz9QJG9AlIaUUpRoFU0HAWgWR0Cr0OrVFx4qdX2UKGgGaAloD0MIWFnbFE99cECUhpRSlGgVTQ0BaBZHQKvQ+T6BRQ91fZQoaAZoCWgPQwi1UDI59dpxQJSGlFKUaBVNDQFoFkdAq9F18Rcu8XV9lChoBmgJaA9DCLqkaruJNXBAlIaUUpRoFU0LAWgWR0Cr0Ydwm3OOdX2UKGgGaAloD0MI2su201bObkCUhpRSlGgVTQoBaBZHQKvR4Zjx0+11fZQoaAZoCWgPQwiiJ2VSwyNyQJSGlFKUaBVNAQFoFkdAq9McWbgCOnV9lChoBmgJaA9DCCdMGM0KUXFAlIaUUpRoFU0bAWgWR0CsBbvovBacdX2UKGgGaAloD0MIvjJv1TXMcUCUhpRSlGgVTSUBaBZHQKwFy5+6RQt1fZQoaAZoCWgPQwg3jliLT55tQJSGlFKUaBVNNQFoFkdArAYgzFdcB3V9lChoBmgJaA9DCBReglMfV3JAlIaUUpRoFU1gAWgWR0CsBy2VNYbLdX2UKGgGaAloD0MIXHFxVO6rcUCUhpRSlGgVS/9oFkdArAcuv4dp7HV9lChoBmgJaA9DCPOPvkmT7HFAlIaUUpRoFU0PAWgWR0CsB51xCIDYdX2UKGgGaAloD0MIyxEykKdPcECUhpRSlGgVTRsBaBZHQKwHnied07t1fZQoaAZoCWgPQwhJ2SJpN3tsQJSGlFKUaBVNBQFoFkdArAg2dwvQGHV9lChoBmgJaA9DCKfK94zES25AlIaUUpRoFUv5aBZHQKwIc0Ltu1p1fZQoaAZoCWgPQwj76NSVT/hwQJSGlFKUaBVNBgFoFkdArAjIf2bobHV9lChoBmgJaA9DCMFz7+GSjW9AlIaUUpRoFUvvaBZHQKwJ8YplSTB1fZQoaAZoCWgPQwiEuHL2DitwQJSGlFKUaBVL9GgWR0CsC1w7DEWJdX2UKGgGaAloD0MII04n2Wo/YECUhpRSlGgVTegDaBZHQKwLq9QGfPJ1fZQoaAZoCWgPQwh8ndSX5RpxQJSGlFKUaBVL6WgWR0CsDOr4vexfdX2UKGgGaAloD0MIg9vawvPPYUCUhpRSlGgVTegDaBZHQKwNQToMa0h1fZQoaAZoCWgPQwi7mjxlNVRxQJSGlFKUaBVNKgFoFkdArA13KU3XI3V9lChoBmgJaA9DCGQe+YMB+mxAlIaUUpRoFU0MAWgWR0CsDdvv0AcUdX2UKGgGaAloD0MIBkzg1t30Q0CUhpRSlGgVS+NoFkdArA38rCm/FnV9lChoBmgJaA9DCGhAvRm1h3FAlIaUUpRoFU0LAWgWR0CsDkx1xKg7dX2UKGgGaAloD0MIhlRRvMoRcECUhpRSlGgVTRcBaBZHQKwOmQK8cuJ1fZQoaAZoCWgPQwgL7ZxmgWpMQJSGlFKUaBVL52gWR0CsDrd7WuoxdX2UKGgGaAloD0MIU1xV9t09cECUhpRSlGgVTQEBaBZHQKwO83S8an91fZQoaAZoCWgPQwgdc56x79pyQJSGlFKUaBVNowFoFkdArA/jKRuCPXV9lChoBmgJaA9DCE8IHXQJdnBAlIaUUpRoFUvuaBZHQKwQAZML4N91fZQoaAZoCWgPQwi6Lvzg/GlvQJSGlFKUaBVNFQFoFkdArBGKxoqTbHV9lChoBmgJaA9DCNycSgaAEW9AlIaUUpRoFU0FAWgWR0CsEk6kqMFVdX2UKGgGaAloD0MIcnDpmHN9b0CUhpRSlGgVS/xoFkdArBLO01IiDHV9lChoBmgJaA9DCP6d7dGbx3FAlIaUUpRoFUvxaBZHQKwS8Ik7fYV1fZQoaAZoCWgPQwgrhUAucXdyQJSGlFKUaBVNIQFoFkdArBMSYRdyDXV9lChoBmgJaA9DCDp6/N4mIGNAlIaUUpRoFU3oA2gWR0CsEybxusLfdX2UKGgGaAloD0MIFXDP86excECUhpRSlGgVTRcBaBZHQKwTZzJZGKB1fZQoaAZoCWgPQwgceSCySLRvQJSGlFKUaBVL/GgWR0CsE3SNfgJkdX2UKGgGaAloD0MIzVzg8piTcECUhpRSlGgVTQcBaBZHQKwTjfShJy11fZQoaAZoCWgPQwidmzbjNGxxQJSGlFKUaBVNNgFoFkdArBOXXoTwlXV9lChoBmgJaA9DCM3NN6L7QHBAlIaUUpRoFU0VAWgWR0CsFAIJRfnfdX2UKGgGaAloD0MIn8n+eZr1cECUhpRSlGgVS/VoFkdArBQqfL9uP3V9lChoBmgJaA9DCGEyVTDqBHBAlIaUUpRoFUv1aBZHQKwUPIwudwx1fZQoaAZoCWgPQwj2fThIyKxwQJSGlFKUaBVL8mgWR0CsFaZ4Oc2BdX2UKGgGaAloD0MI+6wyU9qGbkCUhpRSlGgVTQgBaBZHQKwW3OryUcJ1fZQoaAZoCWgPQwjXL9gNW/1xQJSGlFKUaBVL8mgWR0CsF1cRcu8LdX2UKGgGaAloD0MIHebLCzBZcUCUhpRSlGgVS/doFkdArBdc9fTkQ3V9lChoBmgJaA9DCExuFFnrem9AlIaUUpRoFU0AAWgWR0CsF2c3dbgTdX2UKGgGaAloD0MImG4Sg8BeVkCUhpRSlGgVTegDaBZHQKwXZ8Lront1fZQoaAZoCWgPQwgcmUf+4O9wQJSGlFKUaBVNEwFoFkdArBeaQkona3V9lChoBmgJaA9DCJhPVgyX7XBAlIaUUpRoFUvtaBZHQKwXqHymQ8x1fZQoaAZoCWgPQwi2ZcBZyi9vQJSGlFKUaBVL+GgWR0CsF69XtBv8dX2UKGgGaAloD0MI5+RFJuBlXUCUhpRSlGgVTegDaBZHQKwYGLa24NJ1fZQoaAZoCWgPQwi+UMB2MHFwQJSGlFKUaBVL82gWR0CsGFNHxz7udX2UKGgGaAloD0MIHHqLh3dhbkCUhpRSlGgVTSsBaBZHQKwYecwxnFp1fZQoaAZoCWgPQwggnE8da6hwQJSGlFKUaBVNCwFoFkdArBiEI7eVLXV9lChoBmgJaA9DCDyjrUoiW2xAlIaUUpRoFU0dAWgWR0CsGOyRKYiQdX2UKGgGaAloD0MIPu3w12SEb0CUhpRSlGgVTRcBaBZHQKwaJ5Pdl/Z1fZQoaAZoCWgPQwhKehhaXbFwQJSGlFKUaBVL62gWR0CsGuGseXAudX2UKGgGaAloD0MIwcQfRZ3vbkCUhpRSlGgVS/RoFkdArBsW0zCUHXV9lChoBmgJaA9DCEjDKXPzN29AlIaUUpRoFUvxaBZHQKwbP4YaYNR1fZQoaAZoCWgPQwho5zQLdLRwQJSGlFKUaBVNDAFoFkdArBtzVpblinV9lChoBmgJaA9DCI0o7Q2+w21AlIaUUpRoFUv7aBZHQKwbf/x2B8R1fZQoaAZoCWgPQwgXmus0ko5xQJSGlFKUaBVNEQFoFkdArBuX58BuGnV9lChoBmgJaA9DCAZLdQEvunFAlIaUUpRoFUvmaBZHQKwcCp97Wup1fZQoaAZoCWgPQwgNjLysic9uQJSGlFKUaBVNHwFoFkdArBwPfCQ9zXV9lChoBmgJaA9DCJQXmYCfonFAlIaUUpRoFU0LAWgWR0CsHC94mkWRdX2UKGgGaAloD0MIv7UTJSHzbkCUhpRSlGgVTQEBaBZHQKwcRowEhaF1fZQoaAZoCWgPQwilFd9QOPBxQJSGlFKUaBVL8WgWR0CsHLIKtxMndX2UKGgGaAloD0MINQnekMYIYkCUhpRSlGgVTegDaBZHQKwdhyOq//N1fZQoaAZoCWgPQwhmS1ZF+AVwQJSGlFKUaBVNFQFoFkdArB6KRW912nV9lChoBmgJaA9DCAWiJ2USanBAlIaUUpRoFUv1aBZHQKwet2L5ylx1fZQoaAZoCWgPQwhClZo9kFhxQJSGlFKUaBVNCAFoFkdArB9xtLteD3V9lChoBmgJaA9DCIo8Sbqm8XFAlIaUUpRoFU0FAWgWR0CsH6wqI7/5dX2UKGgGaAloD0MIO/4LBEGmcECUhpRSlGgVTQYBaBZHQKwfyQ7LdN51fZQoaAZoCWgPQwjyfXGpCtdwQJSGlFKUaBVL7WgWR0CsICMnAqNIdX2UKGgGaAloD0MIbqErEajrcECUhpRSlGgVS/xoFkdArCAjoKUmlnV9lChoBmgJaA9DCHZSX5b2DW5AlIaUUpRoFU0QAWgWR0CsIKbOeJ53dX2UKGgGaAloD0MI2Qqalhh2cUCUhpRSlGgVTSoBaBZHQKwhzwWnCO51fZQoaAZoCWgPQwhfCDnv/wtwQJSGlFKUaBVL+2gWR0CsI4Eiliz+dX2UKGgGaAloD0MIyLJg4o8RbkCUhpRSlGgVTQcBaBZHQKwjjKTSssB1fZQoaAZoCWgPQwhruwm+KbRwQJSGlFKUaBVL8mgWR0CsJI8PvrnldX2UKGgGaAloD0MI1Aypong+X0CUhpRSlGgVTegDaBZHQKwk2FVT72t1fZQoaAZoCWgPQwhUrBqEOcJsQJSGlFKUaBVL9mgWR0CsJXPVEuxsdX2UKGgGaAloD0MIxcn9DgVuckCUhpRSlGgVS+NoFkdArCW/u3MINXV9lChoBmgJaA9DCHh8e9egX25AlIaUUpRoFU1fAWgWR0CsJ3l7tzCDdX2UKGgGaAloD0MIS8gHPdu6cUCUhpRSlGgVTU4BaBZHQKwoDByCFsZ1fZQoaAZoCWgPQwj3H5kOnZRqQJSGlFKUaBVNYwFoFkdArCgb3AVO9HV9lChoBmgJaA9DCIApAwe0yW5AlIaUUpRoFU1GAWgWR0CsKpvCl7+ldX2UKGgGaAloD0MIYhOZucBSXECUhpRSlGgVTegDaBZHQKwqskOZssR1fZQoaAZoCWgPQwgVyOws+t9wQJSGlFKUaBVNDwFoFkdArCttjd56dHV9lChoBmgJaA9DCHAi+rX1Cm5AlIaUUpRoFU0BAWgWR0CsLD6oMrmRdX2UKGgGaAloD0MIQS5x5IHgbkCUhpRSlGgVS/1oFkdArCxjV+Zw43V9lChoBmgJaA9DCCsSE9RwH2JAlIaUUpRoFU3oA2gWR0CsLZUsWfsedX2UKGgGaAloD0MIP1OvWwQCaUCUhpRSlGgVTWUBaBZHQKwt+rwvxpd1fZQoaAZoCWgPQwjKiXYVUjRvQJSGlFKUaBVNDQFoFkdArC8OGRFI/nV9lChoBmgJaA9DCCHkvP8PnHBAlIaUUpRoFU1WAWgWR0CsL1qgyuZDdWUu"
74
+ },
75
+ "ep_success_buffer": {
76
+ ":type:": "<class 'collections.deque'>",
77
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
78
+ },
79
+ "_n_updates": 310,
80
+ "n_steps": 2048,
81
+ "gamma": 0.99,
82
+ "gae_lambda": 0.95,
83
+ "ent_coef": 0.0,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 10,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null
95
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:42b9a11a54d2cd6b61e91e44c40f7040498f26a353fbd18a1120f613c2a16cae
3
+ size 87929
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d0085afebd1fe06ae4d23a535642315d3d7a7c2e1cdfb0ddf91457abdbba85db
3
+ size 43393
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.9.16
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Gym: 0.21.0
replay.mp4 ADDED
Binary file (206 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 244.85253424121802, "std_reward": 21.824352562825588, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-20T01:33:11.820639"}