ItchyB commited on
Commit
53bc873
·
1 Parent(s): f52c99b

Upload PPO LunarLander-v2 trained agent

Browse files
07-05-2023-17-01-45-ItchyB-ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2532f3f1d588f11877adb94f9ac6c3614423783c595298321a58303a70bd462c
3
+ size 147189
07-05-2023-17-01-45-ItchyB-ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.8.0
07-05-2023-17-01-45-ItchyB-ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,96 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f934481c940>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f934481c9d0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f934481ca60>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f934481caf0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f934481cb80>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f934481cc10>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f934481cca0>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f934481cd30>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f934481cdc0>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f934481ce50>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f934481cee0>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f934481cf70>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7f934481dc40>"
21
+ },
22
+ "verbose": 0,
23
+ "policy_kwargs": {},
24
+ "num_timesteps": 5013504,
25
+ "_total_timesteps": 5000000.0,
26
+ "_num_timesteps_at_start": 0,
27
+ "seed": null,
28
+ "action_noise": null,
29
+ "start_time": 1683493305005706574,
30
+ "learning_rate": 0.0,
31
+ "tensorboard_log": "tensor_logs/",
32
+ "lr_schedule": {
33
+ ":type:": "<class 'function'>",
34
+ ":serialized:": "gAWVEwMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMcC9ob21lL2J5cm9uL21pbmljb25kYTMvZW52cy9sdW5hci1sYW5kZXItb3B0aW1pemVkL2xpYi9weXRob24zLjkvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjHAvaG9tZS9ieXJvbi9taW5pY29uZGEzL2VudnMvbHVuYXItbGFuZGVyLW9wdGltaXplZC9saWIvcHl0aG9uMy45L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURwAAAAAAAAAAhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
35
+ },
36
+ "_last_obs": {
37
+ ":type:": "<class 'numpy.ndarray'>",
38
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAECK7T1rLok/ItmuPoeEVL8m7vU++AZqPgAAAAAAAAAAM2LevMMRXbqOi982OYEoMgLFmDoLTwG2AACAPwAAgD9NEtk9C8RnP7aRLj7hMGK/c/vNPpOXj7wAAAAAAAAAAGZOR7wpFDC6VbPEOvFxvjXHDqe7qjPouQAAgD8AAIA/ANAgvQXU4btCfH49thaEvAlffjvZ4449AACAPwAAgD+a5/68u7vVPV6grj0eCOG++penvMPbfD0AAAAAAAAAAM2fYz0KlVG7jj4yvYLwlzxCEoY8e1GCvQAAgD8AAIA/zdRpO9AYsz/qxjg+QPqLvhjLhbuusyW9AAAAAAAAAACAeJw9tWk4Pveol7zJWPe+2+bUPJSzBL0AAAAAAAAAAAALZT1i0Jk/4Di5Pl6MYL+hRbI91dnCPgAAAAAAAAAAJqQkPgHE4T71yIC+yhkpv7cKxD0Cnn++AAAAAAAAAAAzIak8T1FVPUJgID08frW+f5nuPH6qeD0AAAAAAAAAAM2T7b0MWlU/OFoLvlrFQb8Wjpi+senFvQAAAAAAAAAAzVW4vLGGmT8RkgW+7VRQvykiNr3hbwC+AAAAAAAAAAAAO0G9eYVwP6iLnL2Ai26/6hm2veOvo70AAAAAAAAAAAD2JLx7Gt26lWiLu72nBD23dtQ54kfhvQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
39
+ },
40
+ "_last_episode_starts": {
41
+ ":type:": "<class 'numpy.ndarray'>",
42
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
43
+ },
44
+ "_last_original_obs": null,
45
+ "_episode_num": 0,
46
+ "use_sde": false,
47
+ "sde_sample_freq": -1,
48
+ "_current_progress_remaining": -0.0027007999999999477,
49
+ "_stats_window_size": 100,
50
+ "ep_info_buffer": {
51
+ ":type:": "<class 'collections.deque'>",
52
+ ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI5bM8D+5UcUCUhpRSlIwBbJRLgowBdJRHQLjXGpItlI51fZQoaAZoCWgPQwh2ilWD8OlzQJSGlFKUaBVLnmgWR0C41y8hkiD/dX2UKGgGaAloD0MIaR7AIr+mckCUhpRSlGgVS5FoFkdAuNczAGjbjHV9lChoBmgJaA9DCNf4TPZPl3FAlIaUUpRoFUuBaBZHQLjXUnndO7B1fZQoaAZoCWgPQwghdxGmqHZxQJSGlFKUaBVLomgWR0C412JDiOvMdX2UKGgGaAloD0MI39416IuDcUCUhpRSlGgVS4VoFkdAuNdw0tRNy3V9lChoBmgJaA9DCPIlVHA4p3JAlIaUUpRoFUu1aBZHQLjXckXUH6d1fZQoaAZoCWgPQwgAkX77+uNwQJSGlFKUaBVLhmgWR0C413OueSSvdX2UKGgGaAloD0MIb0ijAmdscUCUhpRSlGgVS51oFkdAuNd7/n4fwXV9lChoBmgJaA9DCBmSk4mbUHJAlIaUUpRoFUuEaBZHQLjXfd2xIJ91fZQoaAZoCWgPQwhHx9XIrsByQJSGlFKUaBVLs2gWR0C4146RdQfqdX2UKGgGaAloD0MIgCiYMcURckCUhpRSlGgVS6loFkdAuNejWRRuTHV9lChoBmgJaA9DCH2W58Fd5HJAlIaUUpRoFUufaBZHQLjXsxHG0eF1fZQoaAZoCWgPQwjH1F3ZRdZwQJSGlFKUaBVLg2gWR0C4194u9OARdX2UKGgGaAloD0MI3C3JAfs3cUCUhpRSlGgVS5hoFkdAuNffhBJI2HV9lChoBmgJaA9DCFLuPseHvHFAlIaUUpRoFUuraBZHQLjX4Oby6MB1fZQoaAZoCWgPQwjVIqKYvGRzQJSGlFKUaBVLlGgWR0C41/IZdfLLdX2UKGgGaAloD0MIelBQihbRc0CUhpRSlGgVS8FoFkdAuNgPKQq7RXV9lChoBmgJaA9DCDQQy2aOfW9AlIaUUpRoFUuSaBZHQLjYFYChew91fZQoaAZoCWgPQwifxyjPfABxQJSGlFKUaBVLimgWR0C42Bnyy2QXdX2UKGgGaAloD0MI2PD0StnwckCUhpRSlGgVS8RoFkdAuNgkAn2IwnV9lChoBmgJaA9DCNJUT+ZfBXBAlIaUUpRoFUuNaBZHQLjYLdPci4d1fZQoaAZoCWgPQwg26bZEbk5xQJSGlFKUaBVLkmgWR0C42D91EE1VdX2UKGgGaAloD0MIkdCWc6kccUCUhpRSlGgVS6BoFkdAuNhHcwg1WXV9lChoBmgJaA9DCEJAvoQKpHNAlIaUUpRoFUulaBZHQLjYSg/Tspp1fZQoaAZoCWgPQwgLR5BKsY5vQJSGlFKUaBVLm2gWR0C42Gf5pJwsdX2UKGgGaAloD0MIs5quJ7q+cUCUhpRSlGgVS65oFkdAuNhrzf779HV9lChoBmgJaA9DCGx2pPrOPHRAlIaUUpRoFUvGaBZHQLjYdTn7pFF1fZQoaAZoCWgPQwgurBvvDsVyQJSGlFKUaBVLg2gWR0C42H8oUi6hdX2UKGgGaAloD0MIebDFbh+hcECUhpRSlGgVS4RoFkdAuNiBAjY7JXV9lChoBmgJaA9DCFWEm4zqv3NAlIaUUpRoFUusaBZHQLjYiAeJYT11fZQoaAZoCWgPQwgAVkeO9NFwQJSGlFKUaBVLg2gWR0C42KUaZQYUdX2UKGgGaAloD0MIFR40u26UcUCUhpRSlGgVS6loFkdAuNiqlN1yNnV9lChoBmgJaA9DCL9+iA0WfHJAlIaUUpRoFUunaBZHQLjYuTJQtSR1fZQoaAZoCWgPQwi9bhEYa6xwQJSGlFKUaBVLg2gWR0C42LjLB9CvdX2UKGgGaAloD0MIKO54k99/cUCUhpRSlGgVS5hoFkdAuNjHIYFaCHV9lChoBmgJaA9DCJLqO79oNnBAlIaUUpRoFUuMaBZHQLjYzbWmP5p1fZQoaAZoCWgPQwgLl1XYDDNwQJSGlFKUaBVLkmgWR0C42PDJhfBvdX2UKGgGaAloD0MIp5GWyps2cUCUhpRSlGgVS5loFkdAuNjxhRZU1nV9lChoBmgJaA9DCGiSWFKu63BAlIaUUpRoFUudaBZHQLjZA7kn1Fp1fZQoaAZoCWgPQwhgH526Mm1wQJSGlFKUaBVLxmgWR0C42QhgqmTDdX2UKGgGaAloD0MIglZgyGozcUCUhpRSlGgVS6toFkdAuNk+1/lQuXV9lChoBmgJaA9DCCqtvyVAw3BAlIaUUpRoFUuYaBZHQLjZQsYEW691fZQoaAZoCWgPQwjG20qvzYRyQJSGlFKUaBVLpmgWR0C42UpeZ5RkdX2UKGgGaAloD0MIvVRszGv3ckCUhpRSlGgVS55oFkdAuNlOICU5dXV9lChoBmgJaA9DCO49XHJc0XJAlIaUUpRoFUu4aBZHQLjZU1VYISl1fZQoaAZoCWgPQwhiu3uA7h1MQJSGlFKUaBVLTWgWR0C42Vg+t8u0dX2UKGgGaAloD0MIchk3NdBockCUhpRSlGgVS65oFkdAuNll7ojfN3V9lChoBmgJaA9DCFD8GHNX63NAlIaUUpRoFUuYaBZHQLjZcw35vcd1fZQoaAZoCWgPQwjzWgnd5bBwQJSGlFKUaBVLoGgWR0C42YsHv+fidX2UKGgGaAloD0MI1A5/TdYPcUCUhpRSlGgVS6RoFkdAuNmftfG+9XV9lChoBmgJaA9DCHl5OldUR3RAlIaUUpRoFUvAaBZHQLjZoslLOA11fZQoaAZoCWgPQwhfmEwVTEByQJSGlFKUaBVLomgWR0C42aTASFoMdX2UKGgGaAloD0MIPzc0ZSdmckCUhpRSlGgVS85oFkdAuNnOwW3z+XV9lChoBmgJaA9DCKtBmNt9k3NAlIaUUpRoFUuaaBZHQLjZ08IAwPB1fZQoaAZoCWgPQwjEYP4KWYhxQJSGlFKUaBVLqmgWR0C42dbhegL7dX2UKGgGaAloD0MIey5TkyApckCUhpRSlGgVS5toFkdAuNnYZR8+inV9lChoBmgJaA9DCAHBHD2+H3JAlIaUUpRoFUt9aBZHQLjZ5yNGViZ1fZQoaAZoCWgPQwhnCp3X2CFvQJSGlFKUaBVLlGgWR0C42guN96TodX2UKGgGaAloD0MIRMNi1HWcckCUhpRSlGgVS6VoFkdAuNoNUNrj53V9lChoBmgJaA9DCOaSqu1mhnBAlIaUUpRoFUudaBZHQLjaESlWOp91fZQoaAZoCWgPQwjz4sRXe9JwQJSGlFKUaBVLpWgWR0C42hdCE6DHdX2UKGgGaAloD0MIa39ne3SCc0CUhpRSlGgVS6doFkdAuNo7O7g883V9lChoBmgJaA9DCFn3j4XoanJAlIaUUpRoFUu4aBZHQLjaQRw6ySp1fZQoaAZoCWgPQwgxtDo5Q5FxQJSGlFKUaBVLrGgWR0C42k3Zbpu/dX2UKGgGaAloD0MIE9bG2Am9b0CUhpRSlGgVS4xoFkdAuNpPErGzbHV9lChoBmgJaA9DCLWmeccpj3JAlIaUUpRoFUujaBZHQLjabdQwbl11fZQoaAZoCWgPQwjGxObjmm5zQJSGlFKUaBVLtWgWR0C42m+dCmdidX2UKGgGaAloD0MIGjT0TzDEcUCUhpRSlGgVS6poFkdAuNp5IbwSanV9lChoBmgJaA9DCLKbGf3ognBAlIaUUpRoFUuWaBZHQLjah77sOXp1fZQoaAZoCWgPQwiLTwEwnthvQJSGlFKUaBVLl2gWR0C42o0hRqGldX2UKGgGaAloD0MIGZC93v32cUCUhpRSlGgVS6FoFkdAuNqY0BOpKnV9lChoBmgJaA9DCLyyCwZXwHJAlIaUUpRoFUu2aBZHQLjapylvZRN1fZQoaAZoCWgPQwiQozmy8ohwQJSGlFKUaBVLjmgWR0C42sGDlHSXdX2UKGgGaAloD0MIceZXc0Ccc0CUhpRSlGgVS8ZoFkdAuNrXGp++d3V9lChoBmgJaA9DCEAWokMgrnBAlIaUUpRoFUumaBZHQLja238GcF11fZQoaAZoCWgPQwiIS447pcZvQJSGlFKUaBVLomgWR0C42uB+vyLAdX2UKGgGaAloD0MIJQfsanKZb0CUhpRSlGgVS4xoFkdAuNrmUGFBY3V9lChoBmgJaA9DCBe30QCeW3JAlIaUUpRoFUuxaBZHQLja5+8XenB1fZQoaAZoCWgPQwi+a9CXnu9wQJSGlFKUaBVLn2gWR0C42wy3Td+HdX2UKGgGaAloD0MIclMDzWcTcUCUhpRSlGgVS6NoFkdAuNsQGIKtxXV9lChoBmgJaA9DCK+196kqg3BAlIaUUpRoFUuvaBZHQLjbElkYoAp1fZQoaAZoCWgPQwgCui9n9iJxQJSGlFKUaBVLmWgWR0C42yKNVBD5dX2UKGgGaAloD0MIvxBy3j+WckCUhpRSlGgVS6FoFkdAuNs0NMGorHV9lChoBmgJaA9DCLNAu0MK63JAlIaUUpRoFUuwaBZHQLjbPcYIjW11fZQoaAZoCWgPQwhNZVHYxd5xQJSGlFKUaBVLomgWR0C420n9aUzLdX2UKGgGaAloD0MIluzYCMQJdECUhpRSlGgVS5ZoFkdAuNtZMtbs4XV9lChoBmgJaA9DCL4ViQnqL3FAlIaUUpRoFUu4aBZHQLjbYVtoBaN1fZQoaAZoCWgPQwiOsKiIk85xQJSGlFKUaBVLj2gWR0C422wX668QdX2UKGgGaAloD0MIilkvhnKackCUhpRSlGgVS7doFkdAuNt1fzBhyHV9lChoBmgJaA9DCOQUHcml0HFAlIaUUpRoFUuPaBZHQLjbg1X/5tZ1fZQoaAZoCWgPQwi6vaQx2sJyQJSGlFKUaBVLj2gWR0C424mqPwNLdX2UKGgGaAloD0MIxY7GoT77cECUhpRSlGgVS4xoFkdAuNuZPAO8TXV9lChoBmgJaA9DCFe0Oc6tIXNAlIaUUpRoFUusaBZHQLjbuijcmBx1fZQoaAZoCWgPQwgYzjXMkOdxQJSGlFKUaBVLsWgWR0C428oj8k2QdX2UKGgGaAloD0MIKeyi6AEUcUCUhpRSlGgVS5FoFkdAuNvMbhm5D3V9lChoBmgJaA9DCIBEEyiiWnJAlIaUUpRoFUuVaBZHQLjb2DrJKap1fZQoaAZoCWgPQwhTz4JQXjpyQJSGlFKUaBVLp2gWR0C42/Scf/3ndX2UKGgGaAloD0MIW7G/7J4mcUCUhpRSlGgVS4FoFkdAuNv4pazNU3V9lChoBmgJaA9DCLFQa5o3pHFAlIaUUpRoFUuDaBZHQLjcCnpjc211ZS4="
53
+ },
54
+ "ep_success_buffer": {
55
+ ":type:": "<class 'collections.deque'>",
56
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
57
+ },
58
+ "_n_updates": 1530,
59
+ "n_steps": 2048,
60
+ "gamma": 0.99,
61
+ "gae_lambda": 0.95,
62
+ "ent_coef": 0.0,
63
+ "vf_coef": 0.5,
64
+ "max_grad_norm": 0.5,
65
+ "batch_size": 64,
66
+ "n_epochs": 10,
67
+ "clip_range": {
68
+ ":type:": "<class 'function'>",
69
+ ":serialized:": "gAWVxgEAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUtDQwRkAVMAlE5HAAAAAAAAAACGlCmMAV+UhZSMIS90bXAvaXB5a2VybmVsXzk0MDIvMzQzMTQ2MjU0Ni5weZSMCDxsYW1iZGE+lEsGQwCUKSl0lFKUfZQojAtfX3BhY2thZ2VfX5ROjAhfX25hbWVfX5SMCF9fbWFpbl9flHVOTk50lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaBZ9lH2UKGgTaA2MDF9fcXVhbG5hbWVfX5RoDYwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoFIwHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5ROjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
70
+ },
71
+ "clip_range_vf": null,
72
+ "normalize_advantage": true,
73
+ "target_kl": null,
74
+ "observation_space": {
75
+ ":type:": "<class 'gym.spaces.box.Box'>",
76
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
77
+ "dtype": "float32",
78
+ "_shape": [
79
+ 8
80
+ ],
81
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
82
+ "high": "[inf inf inf inf inf inf inf inf]",
83
+ "bounded_below": "[False False False False False False False False]",
84
+ "bounded_above": "[False False False False False False False False]",
85
+ "_np_random": null
86
+ },
87
+ "action_space": {
88
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
89
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
90
+ "n": 4,
91
+ "_shape": [],
92
+ "dtype": "int64",
93
+ "_np_random": null
94
+ },
95
+ "n_envs": 16
96
+ }
07-05-2023-17-01-45-ItchyB-ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2817ed79d555194534d8bab29504e8392bbe17cef871080dce98ff96b17f89b1
3
+ size 88057
07-05-2023-17-01-45-ItchyB-ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:46713e2f1644bc66fdd0416be8d07df8d1e2add9b71bea575b48f7c348df2044
3
+ size 43329
07-05-2023-17-01-45-ItchyB-ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
07-05-2023-17-01-45-ItchyB-ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.15.90.1-microsoft-standard-WSL2-x86_64-with-glibc2.35 # 1 SMP Fri Jan 27 02:56:13 UTC 2023
2
+ - Python: 3.9.16
3
+ - Stable-Baselines3: 1.8.0
4
+ - PyTorch: 2.0.0+cu117
5
+ - GPU Enabled: True
6
+ - Numpy: 1.24.3
7
+ - Gym: 0.21.0
README.md CHANGED
@@ -16,7 +16,7 @@ model-index:
16
  type: LunarLander-v2
17
  metrics:
18
  - type: mean_reward
19
- value: 268.12 +/- 21.79
20
  name: mean_reward
21
  verified: false
22
  ---
 
16
  type: LunarLander-v2
17
  metrics:
18
  - type: mean_reward
19
+ value: 294.62 +/- 17.77
20
  name: mean_reward
21
  verified: false
22
  ---
config.json CHANGED
@@ -1 +1 @@
1
- {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7ff9728c0af0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7ff9728c0b80>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7ff9728c0c10>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7ff9728c0ca0>", "_build": "<function ActorCriticPolicy._build at 0x7ff9728c0d30>", "forward": "<function ActorCriticPolicy.forward at 0x7ff9728c0dc0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7ff9728c0e50>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7ff9728c0ee0>", "_predict": "<function ActorCriticPolicy._predict at 0x7ff9728c0f70>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7ff9728c4040>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7ff9728c40d0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7ff9728c4160>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7ff9728c2880>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 2000896, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1683246750203131078, "learning_rate": 0.0, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVEwMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMcC9ob21lL2J5cm9uL21pbmljb25kYTMvZW52cy9sdW5hci1sYW5kZXItb3B0aW1pemVkL2xpYi9weXRob24zLjkvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjHAvaG9tZS9ieXJvbi9taW5pY29uZGEzL2VudnMvbHVuYXItbGFuZGVyLW9wdGltaXplZC9saWIvcHl0aG9uMy45L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURwAAAAAAAAAAhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": null, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.00044800000000000395, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVaBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI9aCgFG0RcECUhpRSlIwBbJRNJAGMAXSUR0C4sT3NxEORdX2UKGgGaAloD0MIJAwDlpyCckCUhpRSlGgVTR4BaBZHQLix6PUaybB1fZQoaAZoCWgPQwizJ4HNOVVuQJSGlFKUaBVNPQFoFkdAuLKv0oScsnV9lChoBmgJaA9DCDs1lxsMjFFAlIaUUpRoFU3oA2gWR0C4tgFpwjt5dX2UKGgGaAloD0MI7WMFvw1DQ0CUhpRSlGgVS99oFkdAuLb9a3ZwoHV9lChoBmgJaA9DCLlTOlg/DnJAlIaUUpRoFU0aAWgWR0C4t6w7tAs1dX2UKGgGaAloD0MIzjY3pqcyb0CUhpRSlGgVS/toFkdAuLg+rGR3eXV9lChoBmgJaA9DCOGyCpuBQG9AlIaUUpRoFU0gAWgWR0C4uO3m/336dX2UKGgGaAloD0MIwmhWto9ZckCUhpRSlGgVS/xoFkdAuLn9aUzKtHV9lChoBmgJaA9DCKlqgqg7xHBAlIaUUpRoFUv2aBZHQLi6l//echF1fZQoaAZoCWgPQwhdGr/wSstwQJSGlFKUaBVNCwFoFkdAuLs+PYFqz3V9lChoBmgJaA9DCK7yBMJOZ3JAlIaUUpRoFU0UAWgWR0C4u+ggX/HYdX2UKGgGaAloD0MIngjiPByUcECUhpRSlGgVS+poFkdAuLz9ZV4oqnV9lChoBmgJaA9DCB+7C5QUW21AlIaUUpRoFUv8aBZHQLi9mIsRQJp1fZQoaAZoCWgPQwhRoE/kifBxQJSGlFKUaBVNMQFoFkdAuL5SdjG1hXV9lChoBmgJaA9DCAKc3sV7kXBAlIaUUpRoFU0BAWgWR0C4vu4crAgxdX2UKGgGaAloD0MIyAp+G2LPbkCUhpRSlGgVTRUBaBZHQLjABllbu+h1fZQoaAZoCWgPQwixxAPKpsJUQJSGlFKUaBVLmmgWR0C4wGU5dWyUdX2UKGgGaAloD0MICRhd3hyhcECUhpRSlGgVTUoBaBZHQLjBMEX+ERJ1fZQoaAZoCWgPQwi3KR4XFahxQJSGlFKUaBVL72gWR0C4wbqQNkOJdX2UKGgGaAloD0MIvYxiueWbcUCUhpRSlGgVTQ0BaBZHQLjCzo6CDmN1fZQoaAZoCWgPQwhs0Jfe/pQjQJSGlFKUaBVLxmgWR0C4w0E/KQq7dX2UKGgGaAloD0MIYB+dujL0cECUhpRSlGgVS/loFkdAuMPnmzSkTHV9lChoBmgJaA9DCISdYtUgum9AlIaUUpRoFU0JAWgWR0C4xI35WRzSdX2UKGgGaAloD0MID3wMVtw/cECUhpRSlGgVTRcBaBZHQLjFp49HMEB1fZQoaAZoCWgPQwhPWrisQjVzQJSGlFKUaBVL7GgWR0C4xjxAbADadX2UKGgGaAloD0MIXvWAecgwWECUhpRSlGgVTegDaBZHQLjJfHyEtd11fZQoaAZoCWgPQwhj8DDtm5txQJSGlFKUaBVNJAFoFkdAuMo4NayKN3V9lChoBmgJaA9DCAQfgxWnEjlAlIaUUpRoFUvjaBZHQLjKwL61stV1fZQoaAZoCWgPQwiDa+7of4NwQJSGlFKUaBVNJQFoFkdAuMvgoLG7z3V9lChoBmgJaA9DCLMj1Xe+QXNAlIaUUpRoFU0uAWgWR0C4zJexKQJYdX2UKGgGaAloD0MIrtnKS/6QcUCUhpRSlGgVTQYBaBZHQLjNTZOSGJx1fZQoaAZoCWgPQwgGf7+YrUBwQJSGlFKUaBVNHgFoFkdAuM3xXT3IuHV9lChoBmgJaA9DCDoHz4Tm9HBAlIaUUpRoFUv4aBZHQLjO9ZRKpUB1fZQoaAZoCWgPQwhjJ7wEZwZyQJSGlFKUaBVNCgFoFkdAuM+RuaWonHV9lChoBmgJaA9DCDgxJCfTk3JAlIaUUpRoFU0SAWgWR0C40DqqjrRjdX2UKGgGaAloD0MImzqPiv9kcUCUhpRSlGgVTScBaBZHQLjQ+JC0F8p1fZQoaAZoCWgPQwhwQbYsHy5xQJSGlFKUaBVNRQFoFkdAuNJYBDG96HV9lChoBmgJaA9DCOc5It+lXHJAlIaUUpRoFUv8aBZHQLjTDl7+kxh1fZQoaAZoCWgPQwguHt5zYP1uQJSGlFKUaBVNGQFoFkdAuNPgjv/ipHV9lChoBmgJaA9DCESmfAgqU3BAlIaUUpRoFU0KAWgWR0C41QpiRW92dX2UKGgGaAloD0MImrM+5ZiWRkCUhpRSlGgVS9NoFkdAuNWpHEuQIXV9lChoBmgJaA9DCFm/mZhuRXJAlIaUUpRoFU3bAWgWR0C41wK3uuzQdX2UKGgGaAloD0MIhe/9DRq8cUCUhpRSlGgVS/1oFkdAuNetM8HObHV9lChoBmgJaA9DCIc1lUVh/XJAlIaUUpRoFUvtaBZHQLjYoTtsvZh1fZQoaAZoCWgPQwj0p43qdEttQJSGlFKUaBVNCgFoFkdAuNlCXQdCFHV9lChoBmgJaA9DCE2h8xq79W5AlIaUUpRoFU0LAWgWR0C42eKnR9gGdX2UKGgGaAloD0MId2SsNr+bc0CUhpRSlGgVS/toFkdAuNp43DNyHXV9lChoBmgJaA9DCH+ismHN5HBAlIaUUpRoFU0OAWgWR0C4249C/oJRdX2UKGgGaAloD0MICi/Bqc+2cECUhpRSlGgVTSYBaBZHQLjcQd4mkWR1fZQoaAZoCWgPQwiaB7DIr4lwQJSGlFKUaBVNCgFoFkdAuNzaScLBsXV9lChoBmgJaA9DCCGVYkdjAXFAlIaUUpRoFU0TAWgWR0C43gDMibDudX2UKGgGaAloD0MIgQpHkIoNcECUhpRSlGgVTSoBaBZHQLjexv5P/Jh1fZQoaAZoCWgPQwiTqBd8mthtQJSGlFKUaBVNDAFoFkdAuN9vmknCwnV9lChoBmgJaA9DCHBbW3jeZ3BAlIaUUpRoFU1JAWgWR0C44EYUWVNYdX2UKGgGaAloD0MIEMr7OFqqcUCUhpRSlGgVTRwBaBZHQLjheRU3n6l1fZQoaAZoCWgPQwjv4ZLjzlhxQJSGlFKUaBVL6mgWR0C44g1KbrkbdX2UKGgGaAloD0MI2xMktru5cECUhpRSlGgVTQcBaBZHQLjislRxcVx1fZQoaAZoCWgPQwhIGtzWVoRxQJSGlFKUaBVNDQFoFkdAuONkIPbwjXV9lChoBmgJaA9DCDZzSGohlW9AlIaUUpRoFU0LAWgWR0C45I+otL+QdX2UKGgGaAloD0MIGXCWkqX1cECUhpRSlGgVTRoBaBZHQLjlR2pyZKF1fZQoaAZoCWgPQwjzy2CMSFRSQJSGlFKUaBVL22gWR0C45duyeI2wdX2UKGgGaAloD0MIxLXaw57qcUCUhpRSlGgVS/FoFkdAuOZtvo/zKHV9lChoBmgJaA9DCFw4EJIFYHBAlIaUUpRoFU0aAWgWR0C453p2pyZKdX2UKGgGaAloD0MIbagY5+/rbkCUhpRSlGgVTQQBaBZHQLjoFmgJ1JV1fZQoaAZoCWgPQwgaogp/BldxQJSGlFKUaBVNdQFoFkdAuOj83974SHV9lChoBmgJaA9DCONTAIwn+XBAlIaUUpRoFU0EAWgWR0C46g42jwhGdX2UKGgGaAloD0MIluzYCESXcECUhpRSlGgVTSMBaBZHQLjqwij+Jgt1fZQoaAZoCWgPQwhPsWoQpvRyQJSGlFKUaBVNBgFoFkdAuOtn2L5yl3V9lChoBmgJaA9DCEHUfQCSG3FAlIaUUpRoFUvvaBZHQLjsElEqlP91fZQoaAZoCWgPQwiT5Lm+j01xQJSGlFKUaBVNNwFoFkdAuO1R1RtP6HV9lChoBmgJaA9DCFGiJY+n8W9AlIaUUpRoFU0WAWgWR0C47g2nn+yadX2UKGgGaAloD0MIjV4NUBrJbkCUhpRSlGgVTQcBaBZHQLjuvwtJ4B51fZQoaAZoCWgPQwh6jV2ien9wQJSGlFKUaBVNEQFoFkdAuO9x/hESd3V9lChoBmgJaA9DCHXMeca+snBAlIaUUpRoFU0WAWgWR0C48Ljlgc94dX2UKGgGaAloD0MIYoVbPhIZbkCUhpRSlGgVTQABaBZHQLjxbTo+wC91fZQoaAZoCWgPQwhVibK31D5wQJSGlFKUaBVNGwFoFkdAuPIlRQ79ynV9lChoBmgJaA9DCAVQjCwZG3BAlIaUUpRoFU0EAWgWR0C481tOARTTdX2UKGgGaAloD0MI5j3ONGGfcECUhpRSlGgVTTUBaBZHQLj0OwjMV1x1fZQoaAZoCWgPQwi/84sS9NBxQJSGlFKUaBVNGQFoFkdAuPT+uuA7P3V9lChoBmgJaA9DCBNE3QfgdXJAlIaUUpRoFU0AAWgWR0C49Z+PBBRidX2UKGgGaAloD0MIzLbT1gg2cECUhpRSlGgVTR8BaBZHQLj2vPhQ3xZ1fZQoaAZoCWgPQwiM9+P2y2NvQJSGlFKUaBVNGgFoFkdAuPdkbT+efHV9lChoBmgJaA9DCCxGXWtvD2BAlIaUUpRoFU3oA2gWR0C4+rD+rELqdX2UKGgGaAloD0MIt/C8VGyXcECUhpRSlGgVS/doFkdAuPtdB+nZTXV9lChoBmgJaA9DCEVLHk/La25AlIaUUpRoFU0BAWgWR0C4/AnvlU6xdX2UKGgGaAloD0MIC7Wmecd+ckCUhpRSlGgVTQYBaBZHQLj9O+RHPNV1fZQoaAZoCWgPQwjJq3MMiCJwQJSGlFKUaBVNFwFoFkdAuP35VghKUXV9lChoBmgJaA9DCPEpAMazdWRAlIaUUpRoFU3oA2gWR0C5AOPybx3FdX2UKGgGaAloD0MI3eo56f3fcECUhpRSlGgVTVIBaBZHQLkBsX/5tWN1fZQoaAZoCWgPQwiaJmw/GdtmQJSGlFKUaBVN6ANoFkdAuQSuuPmxMXV9lChoBmgJaA9DCG3jT1S2OnFAlIaUUpRoFU0TAWgWR0C5BVzRUm2LdX2UKGgGaAloD0MIwyreyPzNckCUhpRSlGgVTRkBaBZHQLkGfo0ygwp1fZQoaAZoCWgPQwhGlsyxvNJkQJSGlFKUaBVN6ANoFkdAuQmjZXdTHnV9lChoBmgJaA9DCB0ewvhpKmFAlIaUUpRoFU3oA2gWR0C5DObiVB2PdX2UKGgGaAloD0MIv5tu2eHQcECUhpRSlGgVTR4BaBZHQLkNlHHWBjF1fZQoaAZoCWgPQwiO5zOgnsdyQJSGlFKUaBVL7GgWR0C5Dir433pOdX2UKGgGaAloD0MIR6zFp4CSb0CUhpRSlGgVS/5oFkdAuQ7eWkadc3V9lChoBmgJaA9DCA3EsplD925AlIaUUpRoFU0MAWgWR0C5EANvfj0ddX2UKGgGaAloD0MI9bhvtc4VZUCUhpRSlGgVTegDaBZHQLkTRNIbwSd1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 7816, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVSQwAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwSX19yYW5kb21zdGF0ZV9jdG9ylJOUjAdNVDE5OTM3lGgtjBRfX2JpdF9nZW5lcmF0b3JfY3RvcpSTlIaUUpR9lCiMDWJpdF9nZW5lcmF0b3KUjAdNVDE5OTM3lIwFc3RhdGWUfZQojANrZXmUaBIolsAJAAAAAAAAgCR7vOwSTIudsOFbOtAHNYqOx6hdPZqxeFWUrF1LdwPDrNf4UbNB2zuvdy31lG2JQOsDzfOWGisIIodyg0aLCSWZQ3Mbr+lgDXLBGdmGG7Az0exyZlu0WoZi9AtvG1VzKC5ocXVd2DtQrAWe8bXvXKa3moY7F/urWIilt+i+kEr1olnX/fxC2LWDoIWJTTE9HqATMjT0tP4O6qYlJD/rX5VbhWUS8m7rj2tr3vA5yfal2IywZ92BXZjTNjHas3jpg8RGINV5RILcSqtdJBJGAqUKEUdp4pMrMAkx+3duCmIuLDVjmLpNd6buYHn+gkZ3KWn9X7pJ9bsZpyg7Ajuw8Xd8JpXrD9eLdc1vlPSU5w2GWJ6cc/02UozlDgOrJWSm7HNHq4sJpqVOoV11Mz3Hh0s4NFsXqO7YLb/BonZTGnJCvAoal79hnLVmsQC7q8sk7IzOHUVQW1FWt6pJ3hps3H64uiX2xr/dZgki8w0CTaT/GbGDFQOw5hBBybyVkFCSWIEcgzUpPpsdC7TW6Fdcd9vuavc6YhAhAFEZKnbzS4MqZLiNPNXxaIIMcLIMUa5YazPcEs7jEPYnsV2v2ptz6uUXB16bEoLPG53X3yyhr85wCuOQmpQuv7uZoO7Jii1n0BOlkBWdoL59NYlzDIprPiZow4a1YnjfmJLycCC7s1n3FRAcYleOduEuODIK4EhzpCzCZlRGzjCnYdZCLKi4MZ5VtjS3dN5VK7RZh5OGC1qoGjeJ6ahSCz8lrdVC5JDnkYDqKeTXvruKNvGnkV87QIYrE7rSBAlG8Wt1fCAK4xeNmNz4q+Zy8i4dXS29+RFFgFGx2aho2IWXN8hnqkuntGNluyR+MKnNCGLPljaZhHAO9Pv8injgRwI6h3jjPvOGZ/gWz0M2GKd9TPFFEtqarSmggFWb5RZj5iJFzqLymvwF38SuUC9L+FHsIMHxISeKQTNAZincvus87/oAyXtO5fYJsDIy+TtJXufg5qJ2giGLch2qd2dLWLaDTa24FgQ0jffDwAHTLiiG/3OB6bjLbJeoLqzskOQ6X6yDxFv1uBcvaCOsa7gwUIophMnjd7MnIBROYAIYKDZYlz0MzoN9kllYb+uTTvYsHpZspLMCUtXRtqOzPkLH1CaE4hRsA4wZXqUljV8M82H9KKm0w97ISBNRuWABh33MvTKeIG/pku5Vnt53sV/n8zpXkKbETGVHbnri3NMkbJC8Fu95g7ha3gS8plf01wGiF5kYZd82JMbB6fDqfwa7wFvfESfBO3mfyD4LI1UtTwUHPk8bUrhwxbzcr8D2CkvGDh/RK9wDmTs6q9fBNgJLCPLR6Te7Gt6q37se/SHHBBShbv1fij9e8ndgAWpuI1cH6ZJzNXhqhoe45JfmJrm2+FvSAwSzb1zmKfCErhn7R9ZhhYq9tb3aa2XiN8vqnq9nIzVxGEk2bwtM+8P82+6l1wJ3JiG+rYo2AiCEwoTOXm+/HJ/dmZan+aAkQMygiN7c2nXI8IzlFyrUTYn9YIV8kYC8+5IkoRiv9p1kp8+Js493VSfY2G/KNP1rrbhgo2g6lpo/FsqSMtKxhUVBnjOu57Ol8lCqnPzz25QGwGJI0NDSABM8PWeVdf+YSC9f/SVtCStBfYd4qKhYb/h6qNk+pPw3rY2zYJSX6WItirsEwy0n9jUJ07YgPIJXCzf3kvjrYBtBMQkAXo/qf98xJwow2Viv0Z48ipCDRUwlPVLMXzNpSjN3zayvYkWkjR7H6X25aSbUZlj69qaQVmMtcw954YyXPOq9Mz40ibfkGZ+J2elVApJ/NhPAg43RA1UYj6OMddr0ozrvaB6GmAL1I6ucZ3BZhpFpd/xHjsKkrGyzRR3VYI1KH+CC2bg+4Mu1drJ1/e2g/7BK/NKuhbYfGJzaYG3Z/JvcBVypZLtpdAzvoPReSYj5/rdg3ToTV8BnyjzMaUFivN6/bzvrk0GfADrDkjZVdBvoIcTo5BQ0khXERhDJUUCuWrT958OJb8spUyz38xmNKp7zChTQTVTITLCpqo9pYfl7C3c/FSIlOLWTCl7IKl7MlgUkCPrzBzLsMLNSS5WMeGwpRpFaeFF3P9t29DqkMCNguRDUlUUdAi5KAwgE6bgZv8B4neAQMoDrcQbDj9/UVD74U9Wbk3e/sNNUJPJcvoow55zmbhSV6/nPHQlyJQfHAZT4MK8z01MYUVIbZ6lMyaLXUwvVAfMXiI60AXWcSTdXIV/e5Oub+szqEoMv+YTbr0F3/g9LobPxOHPpIHeiRiG4RqLL0HmGsQqEal7uPy4zR8akuGZtSXxEZ791hR2YBYzJMbAgHaMNVzZ2LiYPvG8rKi8V1zTLtm7WgFHyJE07IEPzvRi0BUCxI78l7ygnGeH7rcoV05lwN1ieHbGBGhpwzHm6QOTAcjkpEH9FwjOcor2zK9aheUXLBhgFZ70nTwURvIGURVjqVShTzz+QwfHfP8lGXr7p6quS+51HCEms0R8JzS1AZVGpYbm9+njV/RUat+mZgRIHSgG/Vph6tjYHhB728ZMTNxBs/XYlc83RjOWD3HkJsJD0bo4sxZmT+LcSblDduVWvfltYYzHc3gm6zRdLW4Kdy2ZiyNfC/ka2k+7t+hDoYskefdZreXpAFvh1bmkllhEGIZfSOE1B5ctAz0u42p9nSiViy/+Ts3iHKYFjaDcT8o7dLgaTWqZMn9k4QDa7sD9xj+RoGpYnrYG28bm9GJX28hr3iK3WBOSCbhIkd8G/jG0UlYqYTnA+xCZUcGnRzbWW2yXf7e88M39wDk4tVo9BGeZaoV0/F3Rgp41KeTiPH/Zwt7K4sGaMD422ivo0baGifZMp5NvsjIApMsAcbBpd0UzrCu04VlG549I0mTK4resU7thmCKCfx+DrwlxAxCLGzoK6OovXQ24Tgl8cKJse/4eH/La6rSISPPIXDsMU5abhJdp51oMlNjWVuYzgcEKVqKQfpsZ2STxoHpR0x46BhX+N81vo9vJy8JIGtXN7KeSkKjAcA48q+UEV5xLvETC5Z3LVVpSCczHXp8xo48WYu13ZkmH3IYKZbB5RUjP6QEJgnFKSTDamwvYrNjAmNy5Cc30/HhXHMhTAV6mPuSAAOqB78a0rSr2JtqNo6QhUJmg7iYXv1dtuI7bzZQoSCl2FHLZnFpsOl8wa9ea74kmuhBPOJgrY13DGEhqv/Vg6xXihFOr6Dsj+FJX14WeLg0ulkfJvPjFm6/uhqUZNhh9pEs0Y+eCj3kysbPJqXih0o+qa5fqqRcGLXTelcMcDeA5s6ihuOI5hH7qqYsf2OltcyX+cCtPTm3bV1yBclGgHjAJ1NJSJiIeUUpQoSwNoC05OTkr/////Sv////9LAHSUYk1wAoWUaBV0lFKUjANwb3OUSxB1jAloYXNfZ2F1c3OUSwCMBWdhdXNzlEcAAAAAAAAAAHVidWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": "RandomState(MT19937)"}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVVwsAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwSX19yYW5kb21zdGF0ZV9jdG9ylJOUjAdNVDE5OTM3lGgRjBRfX2JpdF9nZW5lcmF0b3JfY3RvcpSTlIaUUpR9lCiMDWJpdF9nZW5lcmF0b3KUjAdNVDE5OTM3lIwFc3RhdGWUfZQojANrZXmUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWwAkAAAAAAACRSIelMwEMzEwm+wDIKAKk/YxDTiZb+o3bwavl/f134qqsmwrTGPbV0fsQ6vchJOuojEhWwMAqKqhWS3Z0PrcSMqMr2zHLrUrTASdXeAbqgSTwQcGuR9V7NmnlaYFkMbCCiY/EO5v1DjrTlCCD4j2xEtEGrulscqWsYSNp67Dt4FqJfKEZPreobjgwUMBx4EEQ/SDz4MaMnnK4cCNPFR6gMs8vYzdzIo3z2SEeU8rpD1s5VEE1EvzFjj3vwh+DErUzsDqftMyquMuriE2xTX28V5afkxAmaQbplZWieiT4AYr+fmEy0O4W2en0m3BQ38Gm3oTgYcumi5SxaXB9sn1dUO8RFNpTOpimwPInbmVNWPAoXSrvzqUqH7vW2+5xAk0Zmf3fGkoLCGeVLt8DXA+wAVrtSWY8OCyIeGl/XDHQfEHQnNgH/b78i8eO9VVr0GHPusnrUQNzhwhzFRvzBU9d1M+XaxrjazJ8UsWpoEYEC8cHcpC8kf85y0iKk9wk7jDrW9cn0lwGOt5NXLGSnp0yjOCIwxANrrxj9LQ+R16BH4Exv9Cf/eAHYk7tWIQVLzWGWCZVCxN7UXFuajLcOLrngGvcCa7Zz4CBFCz8Ycp+oXb9qRFe15bBRNz6WQr9tknaZN0+xs1/koxe6gLJ8BJKcSQ5HSupPjkdiH5KQDceh0S7kV0GKFdfLbC2Trvf6S1n2LBTV4bjeD9Eym74LCpcHFV7df40xU1Zx+hTvzui+cXRZ3ZNGzp4ktNYZM2fWD37hloC/RutiRQjmc5/BusXM4iS5VpBEzrZqed1Usx4IiMBr1XJZE9bw7cwzfnrUKykJUK3ESGGiF3Kx1cYRWS4XisS7t/myMERg+aNkVAvtZHp9xmi99tsED/PFSOuR6RuXCCu1tKtMQJnm5qP7to1/CxGD4kmLTNugskcFBBAupIvXacf3bneRoXGjPsimlHV3axHoikAAVnjRTQWWTsVIe5RIxaIBV006bkYxRHZBVTcZeEl/IZKmAIJi8KcOQQIeTlhbdZqJIOb9mXMLOb/3yQDvZc6DUPWMtPyky5N3QckDoIkEioDkZ+if+JE3P70I8M4GGLEatD+f8BsVrvOO795Sec9iL2jumZMG6CovS4KICesq437bYnELLVjztmd1dxXRqrx+PTLosXA2XpuTQkyiVHaRLjG8i53KUExZBZewkQUJ6NqWdOE7RCOf/wFX2dND19ggy8oMy8853ux0jada1BkGGjRSwfJNmUKV4UL+ew5iseJaVElGPHgjoGKbyrQp5bXsoxqC4j5H+NS3CEpSY08wSODuzsJ4++PgYOkcJscVJ+6vmx8iPwhINrXLy4Tm6Nhjd6BIZLCrk5hOAVvjsQR0h6ShpDL0IFYboiqgj2l1Yi0zSwiXKW84N+ZuByzYYHRGc/hYew3Q32+XrFB4Sqhvg84vc5VK8R6DLprl8GRsJhtvEPlDumd5Fna/yTERxZWJulZTFHSRLoyIADJDusP296ZGIyxHnSLz0DEhrB6+4NfZWLXwY69ofO/pKI+5H0eh8Cu9wxUDiATLTbbriaZ4BQuhQCPLvY93kf5UHpJwD9llhqPuJkT7F8jT86WiVWKXbwuYHNBsh0OurR5qb7ZlgZnspLBgu5C6fapy0SskZ1U8JGeXZh1QPjrOzqCWB2STYHPdQ0yELNFeiJewTJLNvBFqMROeeedHb8ZCbdxZN1kU2QyuZJk7fZZmdSlXoDdwarNEjmFcVlNdk9zmw6lDyZ8qRETTp+NgIKqOefsw9Ktb13r/X72u7bTfztHi7xOnJJKGzsWbdZueU19F2TMYQ/gNMnpSu0jxfsOALvuowyibLFDEwy6d4VMfk00f4hn0wyrXXguvhfA/KAmkpP1xziLm0oys2mse/Dd0zuxh6sp3+K8dxhJ1sXqJ3AbGl3in3PsrSmmWqqeBakl29CpC+ol6l52OgQMOaMEeCnSSPn5It0hkH4F44k+j0bnl4t4MrInkv1JuPlwXz1mMKXzzWEE8GFzdEWs/o4zUnV4QP+kkZAIu6VMe4K1WnzXLPPsmcSNeN4TWb83Dq5UJHCpMAAHevqqluvC+wZrutNMFPyrSaRJMn+OO6AzYxIH3P9dxjXAHx1Z7et4ukFFIKPr9ooqvMcAygdMNr6AIVSzul8Yav305G/Nk6Y/vozIvEr4NC1oHZ2JCedfM9Q2Vre7z81gAuHdHamHqVdSRHHQsoLBiYea8uayoYBmVKZG8JxtBtsfTHuOqDlVEparN5l5lpSZyQAH8BZOyp4ncI8nafPqSfZPQr97A+3k4Oo+8kQwDBZzhqejlny1rNuVTVIN8wtZb1yqys/I74aKkk/PRMJvec0dApZlSgUp3qPToKEy2x7bbZzKZi3hGnUdrj9mfzZQn/k/Tb3vqol+3GgcrWWyzMYL2hac+eSUEsWXtyNNNYcjz21wr+TDdRDGmUJ9eIKdC+eMveKm4kGmsRUts1cmyZCowgPK2wgFfCvH4H6PoElhhPT2McBsIHCLoJ+ES+KjppaDakGaHRMFhNAHKpvev6B8sU1qNrRrOLez4H7UrI30SSyktoQ1pbGxNNJehZLT7W/ur0eXN7fvxbC3t2WhuAAwrlDiEnJa9cH5Zg4hY5qWQK9XmfpcnSticdhNwvSs+XJNvCfzIfaeaVCOLOvhsbMQDKbDkrB9YgYAl4itOF7ykqd7pLct2cdkDuskr5/B0Byy3yVEJviE2qFhl/2iB5vzlKiV+bD+KWmhZY44eYo/DeRKziBt55mZTCf0eH/aiMXmYX3RtgsypmJsj0ETzIxPru7bOSZJnc7UVkT+DPepMpfo9YorwNo31kGb1IdLiZy2tFwTraA0V1oI3Mei/LenL8b998K9li0nebrOJlhuvHwOja2VumYzOCJzJ4eSTM0wXByOVcVy4moQgl2jekw1gJugem+n4KvFgBTMqM6Pvn0Tss/y93zq0CUUpxfvwqWQgwzHPenjjLBq8gehyST5aXKuimR67qSeRURP1QMb8J4Y1aNdYy91KNuGUPSj7PwQ6DhEFj4uAI7W3pcSrP4lannHQWZdRMfV+hMXYnjxzyH/EoACn9z7g0C2FtpDZ51xdSrXHav44UWM1PWxHp/fEKWPP/pf/YYUtc4lxwGWIfZ6gETwOKxj7aIBEins/aU55iMUY87WqtKjavAe8aIFX14AJTsil29yRnuWXFMUssSty+McOy9/Ok4ErrNifvzuHHXpeP4Uhu9dg+68iWqtItzAU0zNe8TCoakR+3dTuA70aNREnx+rsluBjR7fu8zlEEqcPRab5oi42/C4AL1kOKR32YyUaAqMAnU0lImIh5RSlChLA2gOTk5OSv////9K/////0sAdJRiTXAChZSMAUOUdJRSlIwDcG9zlEsBdYwJaGFzX2dhdXNzlEsAjAVnYXVzc5RHAAAAAAAAAAB1YnViLg==", "n": 4, "_shape": [], "dtype": "int64", "_np_random": "RandomState(MT19937)"}, "n_envs": 1, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxwEAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUtDQwRkAVMAlE5HAAAAAAAAAACGlCmMAV+UhZSMIi90bXAvaXB5a2VybmVsXzI3NzU5LzM2MTE0ODQ4ODIucHmUjAg8bGFtYmRhPpRLBEMAlCkpdJRSlH2UKIwLX19wYWNrYWdlX1+UTowIX19uYW1lX1+UjAhfX21haW5fX5R1Tk5OdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgWfZR9lChoE2gNjAxfX3F1YWxuYW1lX1+UaA2MD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBSMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UTowXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.15.90.1-microsoft-standard-WSL2-x86_64-with-glibc2.35 # 1 SMP Fri Jan 27 02:56:13 UTC 2023", "Python": "3.9.16", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.0+cu117", "GPU Enabled": "True", "Numpy": "1.24.3", "Gym": "0.21.0"}}
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f934481c940>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f934481c9d0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f934481ca60>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f934481caf0>", "_build": "<function ActorCriticPolicy._build at 0x7f934481cb80>", "forward": "<function ActorCriticPolicy.forward at 0x7f934481cc10>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f934481cca0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f934481cd30>", "_predict": "<function ActorCriticPolicy._predict at 0x7f934481cdc0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f934481ce50>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f934481cee0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f934481cf70>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f934481dc40>"}, "verbose": 0, "policy_kwargs": {}, "num_timesteps": 5013504, "_total_timesteps": 5000000.0, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1683493305005706574, "learning_rate": 0.0, "tensorboard_log": "tensor_logs/", "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVEwMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMcC9ob21lL2J5cm9uL21pbmljb25kYTMvZW52cy9sdW5hci1sYW5kZXItb3B0aW1pemVkL2xpYi9weXRob24zLjkvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjHAvaG9tZS9ieXJvbi9taW5pY29uZGEzL2VudnMvbHVuYXItbGFuZGVyLW9wdGltaXplZC9saWIvcHl0aG9uMy45L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURwAAAAAAAAAAhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAECK7T1rLok/ItmuPoeEVL8m7vU++AZqPgAAAAAAAAAAM2LevMMRXbqOi982OYEoMgLFmDoLTwG2AACAPwAAgD9NEtk9C8RnP7aRLj7hMGK/c/vNPpOXj7wAAAAAAAAAAGZOR7wpFDC6VbPEOvFxvjXHDqe7qjPouQAAgD8AAIA/ANAgvQXU4btCfH49thaEvAlffjvZ4449AACAPwAAgD+a5/68u7vVPV6grj0eCOG++penvMPbfD0AAAAAAAAAAM2fYz0KlVG7jj4yvYLwlzxCEoY8e1GCvQAAgD8AAIA/zdRpO9AYsz/qxjg+QPqLvhjLhbuusyW9AAAAAAAAAACAeJw9tWk4Pveol7zJWPe+2+bUPJSzBL0AAAAAAAAAAAALZT1i0Jk/4Di5Pl6MYL+hRbI91dnCPgAAAAAAAAAAJqQkPgHE4T71yIC+yhkpv7cKxD0Cnn++AAAAAAAAAAAzIak8T1FVPUJgID08frW+f5nuPH6qeD0AAAAAAAAAAM2T7b0MWlU/OFoLvlrFQb8Wjpi+senFvQAAAAAAAAAAzVW4vLGGmT8RkgW+7VRQvykiNr3hbwC+AAAAAAAAAAAAO0G9eYVwP6iLnL2Ai26/6hm2veOvo70AAAAAAAAAAAD2JLx7Gt26lWiLu72nBD23dtQ54kfhvQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.0027007999999999477, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI5bM8D+5UcUCUhpRSlIwBbJRLgowBdJRHQLjXGpItlI51fZQoaAZoCWgPQwh2ilWD8OlzQJSGlFKUaBVLnmgWR0C41y8hkiD/dX2UKGgGaAloD0MIaR7AIr+mckCUhpRSlGgVS5FoFkdAuNczAGjbjHV9lChoBmgJaA9DCNf4TPZPl3FAlIaUUpRoFUuBaBZHQLjXUnndO7B1fZQoaAZoCWgPQwghdxGmqHZxQJSGlFKUaBVLomgWR0C412JDiOvMdX2UKGgGaAloD0MI39416IuDcUCUhpRSlGgVS4VoFkdAuNdw0tRNy3V9lChoBmgJaA9DCPIlVHA4p3JAlIaUUpRoFUu1aBZHQLjXckXUH6d1fZQoaAZoCWgPQwgAkX77+uNwQJSGlFKUaBVLhmgWR0C413OueSSvdX2UKGgGaAloD0MIb0ijAmdscUCUhpRSlGgVS51oFkdAuNd7/n4fwXV9lChoBmgJaA9DCBmSk4mbUHJAlIaUUpRoFUuEaBZHQLjXfd2xIJ91fZQoaAZoCWgPQwhHx9XIrsByQJSGlFKUaBVLs2gWR0C4146RdQfqdX2UKGgGaAloD0MIgCiYMcURckCUhpRSlGgVS6loFkdAuNejWRRuTHV9lChoBmgJaA9DCH2W58Fd5HJAlIaUUpRoFUufaBZHQLjXsxHG0eF1fZQoaAZoCWgPQwjH1F3ZRdZwQJSGlFKUaBVLg2gWR0C4194u9OARdX2UKGgGaAloD0MI3C3JAfs3cUCUhpRSlGgVS5hoFkdAuNffhBJI2HV9lChoBmgJaA9DCFLuPseHvHFAlIaUUpRoFUuraBZHQLjX4Oby6MB1fZQoaAZoCWgPQwjVIqKYvGRzQJSGlFKUaBVLlGgWR0C41/IZdfLLdX2UKGgGaAloD0MIelBQihbRc0CUhpRSlGgVS8FoFkdAuNgPKQq7RXV9lChoBmgJaA9DCDQQy2aOfW9AlIaUUpRoFUuSaBZHQLjYFYChew91fZQoaAZoCWgPQwifxyjPfABxQJSGlFKUaBVLimgWR0C42Bnyy2QXdX2UKGgGaAloD0MI2PD0StnwckCUhpRSlGgVS8RoFkdAuNgkAn2IwnV9lChoBmgJaA9DCNJUT+ZfBXBAlIaUUpRoFUuNaBZHQLjYLdPci4d1fZQoaAZoCWgPQwg26bZEbk5xQJSGlFKUaBVLkmgWR0C42D91EE1VdX2UKGgGaAloD0MIkdCWc6kccUCUhpRSlGgVS6BoFkdAuNhHcwg1WXV9lChoBmgJaA9DCEJAvoQKpHNAlIaUUpRoFUulaBZHQLjYSg/Tspp1fZQoaAZoCWgPQwgLR5BKsY5vQJSGlFKUaBVLm2gWR0C42Gf5pJwsdX2UKGgGaAloD0MIs5quJ7q+cUCUhpRSlGgVS65oFkdAuNhrzf779HV9lChoBmgJaA9DCGx2pPrOPHRAlIaUUpRoFUvGaBZHQLjYdTn7pFF1fZQoaAZoCWgPQwgurBvvDsVyQJSGlFKUaBVLg2gWR0C42H8oUi6hdX2UKGgGaAloD0MIebDFbh+hcECUhpRSlGgVS4RoFkdAuNiBAjY7JXV9lChoBmgJaA9DCFWEm4zqv3NAlIaUUpRoFUusaBZHQLjYiAeJYT11fZQoaAZoCWgPQwgAVkeO9NFwQJSGlFKUaBVLg2gWR0C42KUaZQYUdX2UKGgGaAloD0MIFR40u26UcUCUhpRSlGgVS6loFkdAuNiqlN1yNnV9lChoBmgJaA9DCL9+iA0WfHJAlIaUUpRoFUunaBZHQLjYuTJQtSR1fZQoaAZoCWgPQwi9bhEYa6xwQJSGlFKUaBVLg2gWR0C42LjLB9CvdX2UKGgGaAloD0MIKO54k99/cUCUhpRSlGgVS5hoFkdAuNjHIYFaCHV9lChoBmgJaA9DCJLqO79oNnBAlIaUUpRoFUuMaBZHQLjYzbWmP5p1fZQoaAZoCWgPQwgLl1XYDDNwQJSGlFKUaBVLkmgWR0C42PDJhfBvdX2UKGgGaAloD0MIp5GWyps2cUCUhpRSlGgVS5loFkdAuNjxhRZU1nV9lChoBmgJaA9DCGiSWFKu63BAlIaUUpRoFUudaBZHQLjZA7kn1Fp1fZQoaAZoCWgPQwhgH526Mm1wQJSGlFKUaBVLxmgWR0C42QhgqmTDdX2UKGgGaAloD0MIglZgyGozcUCUhpRSlGgVS6toFkdAuNk+1/lQuXV9lChoBmgJaA9DCCqtvyVAw3BAlIaUUpRoFUuYaBZHQLjZQsYEW691fZQoaAZoCWgPQwjG20qvzYRyQJSGlFKUaBVLpmgWR0C42UpeZ5RkdX2UKGgGaAloD0MIvVRszGv3ckCUhpRSlGgVS55oFkdAuNlOICU5dXV9lChoBmgJaA9DCO49XHJc0XJAlIaUUpRoFUu4aBZHQLjZU1VYISl1fZQoaAZoCWgPQwhiu3uA7h1MQJSGlFKUaBVLTWgWR0C42Vg+t8u0dX2UKGgGaAloD0MIchk3NdBockCUhpRSlGgVS65oFkdAuNll7ojfN3V9lChoBmgJaA9DCFD8GHNX63NAlIaUUpRoFUuYaBZHQLjZcw35vcd1fZQoaAZoCWgPQwjzWgnd5bBwQJSGlFKUaBVLoGgWR0C42YsHv+fidX2UKGgGaAloD0MI1A5/TdYPcUCUhpRSlGgVS6RoFkdAuNmftfG+9XV9lChoBmgJaA9DCHl5OldUR3RAlIaUUpRoFUvAaBZHQLjZoslLOA11fZQoaAZoCWgPQwhfmEwVTEByQJSGlFKUaBVLomgWR0C42aTASFoMdX2UKGgGaAloD0MIPzc0ZSdmckCUhpRSlGgVS85oFkdAuNnOwW3z+XV9lChoBmgJaA9DCKtBmNt9k3NAlIaUUpRoFUuaaBZHQLjZ08IAwPB1fZQoaAZoCWgPQwjEYP4KWYhxQJSGlFKUaBVLqmgWR0C42dbhegL7dX2UKGgGaAloD0MIey5TkyApckCUhpRSlGgVS5toFkdAuNnYZR8+inV9lChoBmgJaA9DCAHBHD2+H3JAlIaUUpRoFUt9aBZHQLjZ5yNGViZ1fZQoaAZoCWgPQwhnCp3X2CFvQJSGlFKUaBVLlGgWR0C42guN96TodX2UKGgGaAloD0MIRMNi1HWcckCUhpRSlGgVS6VoFkdAuNoNUNrj53V9lChoBmgJaA9DCOaSqu1mhnBAlIaUUpRoFUudaBZHQLjaESlWOp91fZQoaAZoCWgPQwjz4sRXe9JwQJSGlFKUaBVLpWgWR0C42hdCE6DHdX2UKGgGaAloD0MIa39ne3SCc0CUhpRSlGgVS6doFkdAuNo7O7g883V9lChoBmgJaA9DCFn3j4XoanJAlIaUUpRoFUu4aBZHQLjaQRw6ySp1fZQoaAZoCWgPQwgxtDo5Q5FxQJSGlFKUaBVLrGgWR0C42k3Zbpu/dX2UKGgGaAloD0MIE9bG2Am9b0CUhpRSlGgVS4xoFkdAuNpPErGzbHV9lChoBmgJaA9DCLWmeccpj3JAlIaUUpRoFUujaBZHQLjabdQwbl11fZQoaAZoCWgPQwjGxObjmm5zQJSGlFKUaBVLtWgWR0C42m+dCmdidX2UKGgGaAloD0MIGjT0TzDEcUCUhpRSlGgVS6poFkdAuNp5IbwSanV9lChoBmgJaA9DCLKbGf3ognBAlIaUUpRoFUuWaBZHQLjah77sOXp1fZQoaAZoCWgPQwiLTwEwnthvQJSGlFKUaBVLl2gWR0C42o0hRqGldX2UKGgGaAloD0MIGZC93v32cUCUhpRSlGgVS6FoFkdAuNqY0BOpKnV9lChoBmgJaA9DCLyyCwZXwHJAlIaUUpRoFUu2aBZHQLjapylvZRN1fZQoaAZoCWgPQwiQozmy8ohwQJSGlFKUaBVLjmgWR0C42sGDlHSXdX2UKGgGaAloD0MIceZXc0Ccc0CUhpRSlGgVS8ZoFkdAuNrXGp++d3V9lChoBmgJaA9DCEAWokMgrnBAlIaUUpRoFUumaBZHQLja238GcF11fZQoaAZoCWgPQwiIS447pcZvQJSGlFKUaBVLomgWR0C42uB+vyLAdX2UKGgGaAloD0MIJQfsanKZb0CUhpRSlGgVS4xoFkdAuNrmUGFBY3V9lChoBmgJaA9DCBe30QCeW3JAlIaUUpRoFUuxaBZHQLja5+8XenB1fZQoaAZoCWgPQwi+a9CXnu9wQJSGlFKUaBVLn2gWR0C42wy3Td+HdX2UKGgGaAloD0MIclMDzWcTcUCUhpRSlGgVS6NoFkdAuNsQGIKtxXV9lChoBmgJaA9DCK+196kqg3BAlIaUUpRoFUuvaBZHQLjbElkYoAp1fZQoaAZoCWgPQwgCui9n9iJxQJSGlFKUaBVLmWgWR0C42yKNVBD5dX2UKGgGaAloD0MIvxBy3j+WckCUhpRSlGgVS6FoFkdAuNs0NMGorHV9lChoBmgJaA9DCLNAu0MK63JAlIaUUpRoFUuwaBZHQLjbPcYIjW11fZQoaAZoCWgPQwhNZVHYxd5xQJSGlFKUaBVLomgWR0C420n9aUzLdX2UKGgGaAloD0MIluzYCMQJdECUhpRSlGgVS5ZoFkdAuNtZMtbs4XV9lChoBmgJaA9DCL4ViQnqL3FAlIaUUpRoFUu4aBZHQLjbYVtoBaN1fZQoaAZoCWgPQwiOsKiIk85xQJSGlFKUaBVLj2gWR0C422wX668QdX2UKGgGaAloD0MIilkvhnKackCUhpRSlGgVS7doFkdAuNt1fzBhyHV9lChoBmgJaA9DCOQUHcml0HFAlIaUUpRoFUuPaBZHQLjbg1X/5tZ1fZQoaAZoCWgPQwi6vaQx2sJyQJSGlFKUaBVLj2gWR0C424mqPwNLdX2UKGgGaAloD0MIxY7GoT77cECUhpRSlGgVS4xoFkdAuNuZPAO8TXV9lChoBmgJaA9DCFe0Oc6tIXNAlIaUUpRoFUusaBZHQLjbuijcmBx1fZQoaAZoCWgPQwgYzjXMkOdxQJSGlFKUaBVLsWgWR0C428oj8k2QdX2UKGgGaAloD0MIKeyi6AEUcUCUhpRSlGgVS5FoFkdAuNvMbhm5D3V9lChoBmgJaA9DCIBEEyiiWnJAlIaUUpRoFUuVaBZHQLjb2DrJKap1fZQoaAZoCWgPQwhTz4JQXjpyQJSGlFKUaBVLp2gWR0C42/Scf/3ndX2UKGgGaAloD0MIW7G/7J4mcUCUhpRSlGgVS4FoFkdAuNv4pazNU3V9lChoBmgJaA9DCLFQa5o3pHFAlIaUUpRoFUuDaBZHQLjcCnpjc211ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 1530, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxgEAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUtDQwRkAVMAlE5HAAAAAAAAAACGlCmMAV+UhZSMIS90bXAvaXB5a2VybmVsXzk0MDIvMzQzMTQ2MjU0Ni5weZSMCDxsYW1iZGE+lEsGQwCUKSl0lFKUfZQojAtfX3BhY2thZ2VfX5ROjAhfX25hbWVfX5SMCF9fbWFpbl9flHVOTk50lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaBZ9lH2UKGgTaA2MDF9fcXVhbG5hbWVfX5RoDYwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoFIwHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5ROjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "system_info": {"OS": "Linux-5.15.90.1-microsoft-standard-WSL2-x86_64-with-glibc2.35 # 1 SMP Fri Jan 27 02:56:13 UTC 2023", "Python": "3.9.16", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.0+cu117", "GPU Enabled": "True", "Numpy": "1.24.3", "Gym": "0.21.0"}}
replay.mp4 CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
 
results.json CHANGED
@@ -1 +1 @@
1
- {"mean_reward": 268.12043652114096, "std_reward": 21.787572999605533, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-05-05T18:39:23.643981"}
 
1
+ {"mean_reward": 294.6193867942992, "std_reward": 17.77156092547883, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-05-17T20:44:46.471056"}