Upload folder using huggingface_hub
Browse files- .gitattributes +1 -0
- .summary/0/events.out.tfevents.1682648908.CAPTAIN-AMERICA +3 -0
- README.md +56 -0
- checkpoint_p0/best_000000280_1146880_reward_4.759.pth +3 -0
- checkpoint_p0/checkpoint_000000517_2117632.pth +3 -0
- checkpoint_p0/checkpoint_000000978_4005888.pth +3 -0
- config.json +142 -0
- replay.mp4 +3 -0
- sf_log.txt +624 -0
.gitattributes
CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
35 |
+
replay.mp4 filter=lfs diff=lfs merge=lfs -text
|
.summary/0/events.out.tfevents.1682648908.CAPTAIN-AMERICA
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b993fd09d818e80b3179fe4de0062329a95ce69e5abb72456a2f2957911d2f04
|
3 |
+
size 203043
|
README.md
ADDED
@@ -0,0 +1,56 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: sample-factory
|
3 |
+
tags:
|
4 |
+
- deep-reinforcement-learning
|
5 |
+
- reinforcement-learning
|
6 |
+
- sample-factory
|
7 |
+
model-index:
|
8 |
+
- name: APPO
|
9 |
+
results:
|
10 |
+
- task:
|
11 |
+
type: reinforcement-learning
|
12 |
+
name: reinforcement-learning
|
13 |
+
dataset:
|
14 |
+
name: doom_health_gathering_supreme
|
15 |
+
type: doom_health_gathering_supreme
|
16 |
+
metrics:
|
17 |
+
- type: mean_reward
|
18 |
+
value: 3.90 +/- 0.60
|
19 |
+
name: mean_reward
|
20 |
+
verified: false
|
21 |
+
---
|
22 |
+
|
23 |
+
A(n) **APPO** model trained on the **doom_health_gathering_supreme** environment.
|
24 |
+
|
25 |
+
This model was trained using Sample-Factory 2.0: https://github.com/alex-petrenko/sample-factory.
|
26 |
+
Documentation for how to use Sample-Factory can be found at https://www.samplefactory.dev/
|
27 |
+
|
28 |
+
|
29 |
+
## Downloading the model
|
30 |
+
|
31 |
+
After installing Sample-Factory, download the model with:
|
32 |
+
```
|
33 |
+
python -m sample_factory.huggingface.load_from_hub -r ItchyB/rl_course_vizdoom_health_gathering_supreme
|
34 |
+
```
|
35 |
+
|
36 |
+
|
37 |
+
## Using the model
|
38 |
+
|
39 |
+
To run the model after download, use the `enjoy` script corresponding to this environment:
|
40 |
+
```
|
41 |
+
python -m <path.to.enjoy.module> --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=rl_course_vizdoom_health_gathering_supreme
|
42 |
+
```
|
43 |
+
|
44 |
+
|
45 |
+
You can also upload models to the Hugging Face Hub using the same script with the `--push_to_hub` flag.
|
46 |
+
See https://www.samplefactory.dev/10-huggingface/huggingface/ for more details
|
47 |
+
|
48 |
+
## Training with this model
|
49 |
+
|
50 |
+
To continue training with this model, use the `train` script corresponding to this environment:
|
51 |
+
```
|
52 |
+
python -m <path.to.train.module> --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=rl_course_vizdoom_health_gathering_supreme --restart_behavior=resume --train_for_env_steps=10000000000
|
53 |
+
```
|
54 |
+
|
55 |
+
Note, you may have to adjust `--train_for_env_steps` to a suitably high number as the experiment will resume at the number of steps it concluded at.
|
56 |
+
|
checkpoint_p0/best_000000280_1146880_reward_4.759.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:dcaaf9e66ed8a5018842b94744820c9151474166439b62b504424a4d88d7d11c
|
3 |
+
size 34928156
|
checkpoint_p0/checkpoint_000000517_2117632.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fe0c59bb3cc2ce57a2de7b60b6b68f82fe821daea8347c180125a1c83e633479
|
3 |
+
size 34928156
|
checkpoint_p0/checkpoint_000000978_4005888.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0c041d4c8f7a9b660a19117b7299ccba70cefb4725d2466c1564aad4956ef249
|
3 |
+
size 34928156
|
config.json
ADDED
@@ -0,0 +1,142 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"help": false,
|
3 |
+
"algo": "APPO",
|
4 |
+
"env": "doom_health_gathering_supreme",
|
5 |
+
"experiment": "default_experiment",
|
6 |
+
"train_dir": "/home/byron/projects/rl-learning-course/unit-08/train_dir",
|
7 |
+
"restart_behavior": "resume",
|
8 |
+
"device": "gpu",
|
9 |
+
"seed": null,
|
10 |
+
"num_policies": 1,
|
11 |
+
"async_rl": true,
|
12 |
+
"serial_mode": false,
|
13 |
+
"batched_sampling": false,
|
14 |
+
"num_batches_to_accumulate": 2,
|
15 |
+
"worker_num_splits": 2,
|
16 |
+
"policy_workers_per_policy": 1,
|
17 |
+
"max_policy_lag": 1000,
|
18 |
+
"num_workers": 8,
|
19 |
+
"num_envs_per_worker": 4,
|
20 |
+
"batch_size": 1024,
|
21 |
+
"num_batches_per_epoch": 1,
|
22 |
+
"num_epochs": 1,
|
23 |
+
"rollout": 32,
|
24 |
+
"recurrence": 32,
|
25 |
+
"shuffle_minibatches": false,
|
26 |
+
"gamma": 0.99,
|
27 |
+
"reward_scale": 1.0,
|
28 |
+
"reward_clip": 1000.0,
|
29 |
+
"value_bootstrap": false,
|
30 |
+
"normalize_returns": true,
|
31 |
+
"exploration_loss_coeff": 0.001,
|
32 |
+
"value_loss_coeff": 0.5,
|
33 |
+
"kl_loss_coeff": 0.0,
|
34 |
+
"exploration_loss": "symmetric_kl",
|
35 |
+
"gae_lambda": 0.95,
|
36 |
+
"ppo_clip_ratio": 0.1,
|
37 |
+
"ppo_clip_value": 0.2,
|
38 |
+
"with_vtrace": false,
|
39 |
+
"vtrace_rho": 1.0,
|
40 |
+
"vtrace_c": 1.0,
|
41 |
+
"optimizer": "adam",
|
42 |
+
"adam_eps": 1e-06,
|
43 |
+
"adam_beta1": 0.9,
|
44 |
+
"adam_beta2": 0.999,
|
45 |
+
"max_grad_norm": 4.0,
|
46 |
+
"learning_rate": 0.0001,
|
47 |
+
"lr_schedule": "constant",
|
48 |
+
"lr_schedule_kl_threshold": 0.008,
|
49 |
+
"lr_adaptive_min": 1e-06,
|
50 |
+
"lr_adaptive_max": 0.01,
|
51 |
+
"obs_subtract_mean": 0.0,
|
52 |
+
"obs_scale": 255.0,
|
53 |
+
"normalize_input": true,
|
54 |
+
"normalize_input_keys": null,
|
55 |
+
"decorrelate_experience_max_seconds": 0,
|
56 |
+
"decorrelate_envs_on_one_worker": true,
|
57 |
+
"actor_worker_gpus": [],
|
58 |
+
"set_workers_cpu_affinity": true,
|
59 |
+
"force_envs_single_thread": false,
|
60 |
+
"default_niceness": 0,
|
61 |
+
"log_to_file": true,
|
62 |
+
"experiment_summaries_interval": 10,
|
63 |
+
"flush_summaries_interval": 30,
|
64 |
+
"stats_avg": 100,
|
65 |
+
"summaries_use_frameskip": true,
|
66 |
+
"heartbeat_interval": 20,
|
67 |
+
"heartbeat_reporting_interval": 600,
|
68 |
+
"train_for_env_steps": 4000000,
|
69 |
+
"train_for_seconds": 10000000000,
|
70 |
+
"save_every_sec": 120,
|
71 |
+
"keep_checkpoints": 2,
|
72 |
+
"load_checkpoint_kind": "latest",
|
73 |
+
"save_milestones_sec": -1,
|
74 |
+
"save_best_every_sec": 5,
|
75 |
+
"save_best_metric": "reward",
|
76 |
+
"save_best_after": 100000,
|
77 |
+
"benchmark": false,
|
78 |
+
"encoder_mlp_layers": [
|
79 |
+
512,
|
80 |
+
512
|
81 |
+
],
|
82 |
+
"encoder_conv_architecture": "convnet_simple",
|
83 |
+
"encoder_conv_mlp_layers": [
|
84 |
+
512
|
85 |
+
],
|
86 |
+
"use_rnn": true,
|
87 |
+
"rnn_size": 512,
|
88 |
+
"rnn_type": "gru",
|
89 |
+
"rnn_num_layers": 1,
|
90 |
+
"decoder_mlp_layers": [],
|
91 |
+
"nonlinearity": "elu",
|
92 |
+
"policy_initialization": "orthogonal",
|
93 |
+
"policy_init_gain": 1.0,
|
94 |
+
"actor_critic_share_weights": true,
|
95 |
+
"adaptive_stddev": true,
|
96 |
+
"continuous_tanh_scale": 0.0,
|
97 |
+
"initial_stddev": 1.0,
|
98 |
+
"use_env_info_cache": false,
|
99 |
+
"env_gpu_actions": false,
|
100 |
+
"env_gpu_observations": true,
|
101 |
+
"env_frameskip": 4,
|
102 |
+
"env_framestack": 1,
|
103 |
+
"pixel_format": "CHW",
|
104 |
+
"use_record_episode_statistics": false,
|
105 |
+
"with_wandb": false,
|
106 |
+
"wandb_user": null,
|
107 |
+
"wandb_project": "sample_factory",
|
108 |
+
"wandb_group": null,
|
109 |
+
"wandb_job_type": "SF",
|
110 |
+
"wandb_tags": [],
|
111 |
+
"with_pbt": false,
|
112 |
+
"pbt_mix_policies_in_one_env": true,
|
113 |
+
"pbt_period_env_steps": 5000000,
|
114 |
+
"pbt_start_mutation": 20000000,
|
115 |
+
"pbt_replace_fraction": 0.3,
|
116 |
+
"pbt_mutation_rate": 0.15,
|
117 |
+
"pbt_replace_reward_gap": 0.1,
|
118 |
+
"pbt_replace_reward_gap_absolute": 1e-06,
|
119 |
+
"pbt_optimize_gamma": false,
|
120 |
+
"pbt_target_objective": "true_objective",
|
121 |
+
"pbt_perturb_min": 1.1,
|
122 |
+
"pbt_perturb_max": 1.5,
|
123 |
+
"num_agents": -1,
|
124 |
+
"num_humans": 0,
|
125 |
+
"num_bots": -1,
|
126 |
+
"start_bot_difficulty": null,
|
127 |
+
"timelimit": null,
|
128 |
+
"res_w": 128,
|
129 |
+
"res_h": 72,
|
130 |
+
"wide_aspect_ratio": false,
|
131 |
+
"eval_env_frameskip": 1,
|
132 |
+
"fps": 35,
|
133 |
+
"command_line": "--env=doom_health_gathering_supreme --num_workers=8 --num_envs_per_worker=4 --train_for_env_steps=4000000",
|
134 |
+
"cli_args": {
|
135 |
+
"env": "doom_health_gathering_supreme",
|
136 |
+
"num_workers": 8,
|
137 |
+
"num_envs_per_worker": 4,
|
138 |
+
"train_for_env_steps": 4000000
|
139 |
+
},
|
140 |
+
"git_hash": "unknown",
|
141 |
+
"git_repo_name": "not a git repository"
|
142 |
+
}
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2e1acb924a30b27425c5dcc73ae4ba44ec05f28cea902cafff951ef665970113
|
3 |
+
size 5397393
|
sf_log.txt
ADDED
@@ -0,0 +1,624 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[2023-04-27 22:28:30,298][19320] Saving configuration to /home/byron/projects/rl-learning-course/unit-08/train_dir/default_experiment/config.json...
|
2 |
+
[2023-04-27 22:28:30,299][19320] Rollout worker 0 uses device cpu
|
3 |
+
[2023-04-27 22:28:30,300][19320] Rollout worker 1 uses device cpu
|
4 |
+
[2023-04-27 22:28:30,300][19320] Rollout worker 2 uses device cpu
|
5 |
+
[2023-04-27 22:28:30,302][19320] Rollout worker 3 uses device cpu
|
6 |
+
[2023-04-27 22:28:30,302][19320] Rollout worker 4 uses device cpu
|
7 |
+
[2023-04-27 22:28:30,303][19320] Rollout worker 5 uses device cpu
|
8 |
+
[2023-04-27 22:28:30,304][19320] Rollout worker 6 uses device cpu
|
9 |
+
[2023-04-27 22:28:30,304][19320] Rollout worker 7 uses device cpu
|
10 |
+
[2023-04-27 22:28:30,345][19320] Using GPUs [0] for process 0 (actually maps to GPUs [0])
|
11 |
+
[2023-04-27 22:28:30,345][19320] InferenceWorker_p0-w0: min num requests: 2
|
12 |
+
[2023-04-27 22:28:30,363][19320] Starting all processes...
|
13 |
+
[2023-04-27 22:28:30,364][19320] Starting process learner_proc0
|
14 |
+
[2023-04-27 22:28:30,489][19320] Starting all processes...
|
15 |
+
[2023-04-27 22:28:30,494][19320] Starting process inference_proc0-0
|
16 |
+
[2023-04-27 22:28:30,494][19320] Starting process rollout_proc0
|
17 |
+
[2023-04-27 22:28:30,495][19320] Starting process rollout_proc1
|
18 |
+
[2023-04-27 22:28:30,495][19320] Starting process rollout_proc2
|
19 |
+
[2023-04-27 22:28:30,496][19320] Starting process rollout_proc3
|
20 |
+
[2023-04-27 22:28:30,496][19320] Starting process rollout_proc4
|
21 |
+
[2023-04-27 22:28:30,496][19320] Starting process rollout_proc5
|
22 |
+
[2023-04-27 22:28:30,497][19320] Starting process rollout_proc6
|
23 |
+
[2023-04-27 22:28:30,497][19320] Starting process rollout_proc7
|
24 |
+
[2023-04-27 22:28:31,380][26612] Using GPUs [0] for process 0 (actually maps to GPUs [0])
|
25 |
+
[2023-04-27 22:28:31,380][26612] Set environment var CUDA_VISIBLE_DEVICES to '0' (GPU indices [0]) for learning process 0
|
26 |
+
[2023-04-27 22:28:31,403][26612] Num visible devices: 1
|
27 |
+
[2023-04-27 22:28:31,424][26630] Worker 3 uses CPU cores [9, 10, 11]
|
28 |
+
[2023-04-27 22:28:31,427][26612] Starting seed is not provided
|
29 |
+
[2023-04-27 22:28:31,427][26612] Using GPUs [0] for process 0 (actually maps to GPUs [0])
|
30 |
+
[2023-04-27 22:28:31,427][26612] Initializing actor-critic model on device cuda:0
|
31 |
+
[2023-04-27 22:28:31,427][26612] RunningMeanStd input shape: (3, 72, 128)
|
32 |
+
[2023-04-27 22:28:31,428][26612] RunningMeanStd input shape: (1,)
|
33 |
+
[2023-04-27 22:28:31,430][26629] Worker 2 uses CPU cores [6, 7, 8]
|
34 |
+
[2023-04-27 22:28:31,434][26628] Worker 1 uses CPU cores [3, 4, 5]
|
35 |
+
[2023-04-27 22:28:31,439][26612] ConvEncoder: input_channels=3
|
36 |
+
[2023-04-27 22:28:31,444][26638] Worker 7 uses CPU cores [21, 22, 23]
|
37 |
+
[2023-04-27 22:28:31,455][26626] Worker 0 uses CPU cores [0, 1, 2]
|
38 |
+
[2023-04-27 22:28:31,457][26632] Worker 5 uses CPU cores [15, 16, 17]
|
39 |
+
[2023-04-27 22:28:31,467][26631] Worker 4 uses CPU cores [12, 13, 14]
|
40 |
+
[2023-04-27 22:28:31,474][26627] Using GPUs [0] for process 0 (actually maps to GPUs [0])
|
41 |
+
[2023-04-27 22:28:31,474][26627] Set environment var CUDA_VISIBLE_DEVICES to '0' (GPU indices [0]) for inference process 0
|
42 |
+
[2023-04-27 22:28:31,481][26657] Worker 6 uses CPU cores [18, 19, 20]
|
43 |
+
[2023-04-27 22:28:31,507][26627] Num visible devices: 1
|
44 |
+
[2023-04-27 22:28:31,580][26612] Conv encoder output size: 512
|
45 |
+
[2023-04-27 22:28:31,581][26612] Policy head output size: 512
|
46 |
+
[2023-04-27 22:28:31,603][26612] Created Actor Critic model with architecture:
|
47 |
+
[2023-04-27 22:28:31,603][26612] ActorCriticSharedWeights(
|
48 |
+
(obs_normalizer): ObservationNormalizer(
|
49 |
+
(running_mean_std): RunningMeanStdDictInPlace(
|
50 |
+
(running_mean_std): ModuleDict(
|
51 |
+
(obs): RunningMeanStdInPlace()
|
52 |
+
)
|
53 |
+
)
|
54 |
+
)
|
55 |
+
(returns_normalizer): RecursiveScriptModule(original_name=RunningMeanStdInPlace)
|
56 |
+
(encoder): VizdoomEncoder(
|
57 |
+
(basic_encoder): ConvEncoder(
|
58 |
+
(enc): RecursiveScriptModule(
|
59 |
+
original_name=ConvEncoderImpl
|
60 |
+
(conv_head): RecursiveScriptModule(
|
61 |
+
original_name=Sequential
|
62 |
+
(0): RecursiveScriptModule(original_name=Conv2d)
|
63 |
+
(1): RecursiveScriptModule(original_name=ELU)
|
64 |
+
(2): RecursiveScriptModule(original_name=Conv2d)
|
65 |
+
(3): RecursiveScriptModule(original_name=ELU)
|
66 |
+
(4): RecursiveScriptModule(original_name=Conv2d)
|
67 |
+
(5): RecursiveScriptModule(original_name=ELU)
|
68 |
+
)
|
69 |
+
(mlp_layers): RecursiveScriptModule(
|
70 |
+
original_name=Sequential
|
71 |
+
(0): RecursiveScriptModule(original_name=Linear)
|
72 |
+
(1): RecursiveScriptModule(original_name=ELU)
|
73 |
+
)
|
74 |
+
)
|
75 |
+
)
|
76 |
+
)
|
77 |
+
(core): ModelCoreRNN(
|
78 |
+
(core): GRU(512, 512)
|
79 |
+
)
|
80 |
+
(decoder): MlpDecoder(
|
81 |
+
(mlp): Identity()
|
82 |
+
)
|
83 |
+
(critic_linear): Linear(in_features=512, out_features=1, bias=True)
|
84 |
+
(action_parameterization): ActionParameterizationDefault(
|
85 |
+
(distribution_linear): Linear(in_features=512, out_features=5, bias=True)
|
86 |
+
)
|
87 |
+
)
|
88 |
+
[2023-04-27 22:28:33,372][26612] Using optimizer <class 'torch.optim.adam.Adam'>
|
89 |
+
[2023-04-27 22:28:33,373][26612] No checkpoints found
|
90 |
+
[2023-04-27 22:28:33,373][26612] Did not load from checkpoint, starting from scratch!
|
91 |
+
[2023-04-27 22:28:33,373][26612] Initialized policy 0 weights for model version 0
|
92 |
+
[2023-04-27 22:28:33,376][26612] LearnerWorker_p0 finished initialization!
|
93 |
+
[2023-04-27 22:28:33,376][26612] Using GPUs [0] for process 0 (actually maps to GPUs [0])
|
94 |
+
[2023-04-27 22:28:33,815][19320] Fps is (10 sec: nan, 60 sec: nan, 300 sec: nan). Total num frames: 0. Throughput: 0: nan. Samples: 0. Policy #0 lag: (min: -1.0, avg: -1.0, max: -1.0)
|
95 |
+
[2023-04-27 22:28:34,070][26627] RunningMeanStd input shape: (3, 72, 128)
|
96 |
+
[2023-04-27 22:28:34,071][26627] RunningMeanStd input shape: (1,)
|
97 |
+
[2023-04-27 22:28:34,079][26627] ConvEncoder: input_channels=3
|
98 |
+
[2023-04-27 22:28:34,158][26627] Conv encoder output size: 512
|
99 |
+
[2023-04-27 22:28:34,159][26627] Policy head output size: 512
|
100 |
+
[2023-04-27 22:28:34,896][19320] Inference worker 0-0 is ready!
|
101 |
+
[2023-04-27 22:28:34,897][19320] All inference workers are ready! Signal rollout workers to start!
|
102 |
+
[2023-04-27 22:28:34,912][26657] Doom resolution: 160x120, resize resolution: (128, 72)
|
103 |
+
[2023-04-27 22:28:34,913][26630] Doom resolution: 160x120, resize resolution: (128, 72)
|
104 |
+
[2023-04-27 22:28:34,914][26638] Doom resolution: 160x120, resize resolution: (128, 72)
|
105 |
+
[2023-04-27 22:28:34,914][26629] Doom resolution: 160x120, resize resolution: (128, 72)
|
106 |
+
[2023-04-27 22:28:34,914][26626] Doom resolution: 160x120, resize resolution: (128, 72)
|
107 |
+
[2023-04-27 22:28:34,915][26632] Doom resolution: 160x120, resize resolution: (128, 72)
|
108 |
+
[2023-04-27 22:28:34,915][26631] Doom resolution: 160x120, resize resolution: (128, 72)
|
109 |
+
[2023-04-27 22:28:34,915][26628] Doom resolution: 160x120, resize resolution: (128, 72)
|
110 |
+
[2023-04-27 22:28:34,949][26628] VizDoom game.init() threw an exception ViZDoomUnexpectedExitException('Controlled ViZDoom instance exited unexpectedly.'). Terminate process...
|
111 |
+
[2023-04-27 22:28:34,950][26628] EvtLoop [rollout_proc1_evt_loop, process=rollout_proc1] unhandled exception in slot='init' connected to emitter=Emitter(object_id='Sampler', signal_name='_inference_workers_initialized'), args=()
|
112 |
+
Traceback (most recent call last):
|
113 |
+
File "/home/byron/miniconda3/envs/ml-agents/lib/python3.9/site-packages/sf_examples/vizdoom/doom/doom_gym.py", line 228, in _game_init
|
114 |
+
self.game.init()
|
115 |
+
vizdoom.vizdoom.ViZDoomUnexpectedExitException: Controlled ViZDoom instance exited unexpectedly.
|
116 |
+
|
117 |
+
During handling of the above exception, another exception occurred:
|
118 |
+
|
119 |
+
Traceback (most recent call last):
|
120 |
+
File "/home/byron/miniconda3/envs/ml-agents/lib/python3.9/site-packages/signal_slot/signal_slot.py", line 355, in _process_signal
|
121 |
+
slot_callable(*args)
|
122 |
+
File "/home/byron/miniconda3/envs/ml-agents/lib/python3.9/site-packages/sample_factory/algo/sampling/rollout_worker.py", line 150, in init
|
123 |
+
env_runner.init(self.timing)
|
124 |
+
File "/home/byron/miniconda3/envs/ml-agents/lib/python3.9/site-packages/sample_factory/algo/sampling/non_batched_sampling.py", line 418, in init
|
125 |
+
self._reset()
|
126 |
+
File "/home/byron/miniconda3/envs/ml-agents/lib/python3.9/site-packages/sample_factory/algo/sampling/non_batched_sampling.py", line 430, in _reset
|
127 |
+
observations, info = e.reset(seed=seed) # new way of doing seeding since Gym 0.26.0
|
128 |
+
File "/home/byron/miniconda3/envs/ml-agents/lib/python3.9/site-packages/gym/core.py", line 323, in reset
|
129 |
+
return self.env.reset(**kwargs)
|
130 |
+
File "/home/byron/miniconda3/envs/ml-agents/lib/python3.9/site-packages/sample_factory/algo/utils/make_env.py", line 125, in reset
|
131 |
+
obs, info = self.env.reset(**kwargs)
|
132 |
+
File "/home/byron/miniconda3/envs/ml-agents/lib/python3.9/site-packages/sample_factory/algo/utils/make_env.py", line 110, in reset
|
133 |
+
obs, info = self.env.reset(**kwargs)
|
134 |
+
File "/home/byron/miniconda3/envs/ml-agents/lib/python3.9/site-packages/sf_examples/vizdoom/doom/wrappers/scenario_wrappers/gathering_reward_shaping.py", line 30, in reset
|
135 |
+
return self.env.reset(**kwargs)
|
136 |
+
File "/home/byron/miniconda3/envs/ml-agents/lib/python3.9/site-packages/gym/core.py", line 379, in reset
|
137 |
+
obs, info = self.env.reset(**kwargs)
|
138 |
+
File "/home/byron/miniconda3/envs/ml-agents/lib/python3.9/site-packages/sample_factory/envs/env_wrappers.py", line 84, in reset
|
139 |
+
obs, info = self.env.reset(**kwargs)
|
140 |
+
File "/home/byron/miniconda3/envs/ml-agents/lib/python3.9/site-packages/gym/core.py", line 323, in reset
|
141 |
+
return self.env.reset(**kwargs)
|
142 |
+
File "/home/byron/miniconda3/envs/ml-agents/lib/python3.9/site-packages/sf_examples/vizdoom/doom/wrappers/multiplayer_stats.py", line 51, in reset
|
143 |
+
return self.env.reset(**kwargs)
|
144 |
+
File "/home/byron/miniconda3/envs/ml-agents/lib/python3.9/site-packages/sf_examples/vizdoom/doom/doom_gym.py", line 323, in reset
|
145 |
+
self._ensure_initialized()
|
146 |
+
File "/home/byron/miniconda3/envs/ml-agents/lib/python3.9/site-packages/sf_examples/vizdoom/doom/doom_gym.py", line 274, in _ensure_initialized
|
147 |
+
self.initialize()
|
148 |
+
File "/home/byron/miniconda3/envs/ml-agents/lib/python3.9/site-packages/sf_examples/vizdoom/doom/doom_gym.py", line 269, in initialize
|
149 |
+
self._game_init()
|
150 |
+
File "/home/byron/miniconda3/envs/ml-agents/lib/python3.9/site-packages/sf_examples/vizdoom/doom/doom_gym.py", line 244, in _game_init
|
151 |
+
raise EnvCriticalError()
|
152 |
+
sample_factory.envs.env_utils.EnvCriticalError
|
153 |
+
[2023-04-27 22:28:34,951][26628] Unhandled exception in evt loop rollout_proc1_evt_loop
|
154 |
+
[2023-04-27 22:28:35,135][26629] Decorrelating experience for 0 frames...
|
155 |
+
[2023-04-27 22:28:35,135][26630] Decorrelating experience for 0 frames...
|
156 |
+
[2023-04-27 22:28:35,135][26657] Decorrelating experience for 0 frames...
|
157 |
+
[2023-04-27 22:28:35,141][26631] Decorrelating experience for 0 frames...
|
158 |
+
[2023-04-27 22:28:35,326][26629] Decorrelating experience for 32 frames...
|
159 |
+
[2023-04-27 22:28:35,327][26631] Decorrelating experience for 32 frames...
|
160 |
+
[2023-04-27 22:28:35,361][26630] Decorrelating experience for 32 frames...
|
161 |
+
[2023-04-27 22:28:35,399][26632] Decorrelating experience for 0 frames...
|
162 |
+
[2023-04-27 22:28:35,410][26626] Decorrelating experience for 0 frames...
|
163 |
+
[2023-04-27 22:28:35,566][26631] Decorrelating experience for 64 frames...
|
164 |
+
[2023-04-27 22:28:35,567][26657] Decorrelating experience for 32 frames...
|
165 |
+
[2023-04-27 22:28:35,596][26632] Decorrelating experience for 32 frames...
|
166 |
+
[2023-04-27 22:28:35,596][26629] Decorrelating experience for 64 frames...
|
167 |
+
[2023-04-27 22:28:35,597][26630] Decorrelating experience for 64 frames...
|
168 |
+
[2023-04-27 22:28:35,783][26631] Decorrelating experience for 96 frames...
|
169 |
+
[2023-04-27 22:28:35,784][26657] Decorrelating experience for 64 frames...
|
170 |
+
[2023-04-27 22:28:35,825][26626] Decorrelating experience for 32 frames...
|
171 |
+
[2023-04-27 22:28:35,826][26629] Decorrelating experience for 96 frames...
|
172 |
+
[2023-04-27 22:28:35,860][26630] Decorrelating experience for 96 frames...
|
173 |
+
[2023-04-27 22:28:36,028][26626] Decorrelating experience for 64 frames...
|
174 |
+
[2023-04-27 22:28:36,029][26638] Decorrelating experience for 0 frames...
|
175 |
+
[2023-04-27 22:28:36,236][26638] Decorrelating experience for 32 frames...
|
176 |
+
[2023-04-27 22:28:36,278][26626] Decorrelating experience for 96 frames...
|
177 |
+
[2023-04-27 22:28:36,483][26638] Decorrelating experience for 64 frames...
|
178 |
+
[2023-04-27 22:28:36,526][26657] Decorrelating experience for 96 frames...
|
179 |
+
[2023-04-27 22:28:36,742][26638] Decorrelating experience for 96 frames...
|
180 |
+
[2023-04-27 22:28:36,763][26632] Decorrelating experience for 64 frames...
|
181 |
+
[2023-04-27 22:28:37,009][26632] Decorrelating experience for 96 frames...
|
182 |
+
[2023-04-27 22:28:38,609][26612] Signal inference workers to stop experience collection...
|
183 |
+
[2023-04-27 22:28:38,611][26627] InferenceWorker_p0-w0: stopping experience collection
|
184 |
+
[2023-04-27 22:28:38,815][19320] Fps is (10 sec: 0.0, 60 sec: 0.0, 300 sec: 0.0). Total num frames: 0. Throughput: 0: 130.4. Samples: 652. Policy #0 lag: (min: -1.0, avg: -1.0, max: -1.0)
|
185 |
+
[2023-04-27 22:28:38,816][19320] Avg episode reward: [(0, '2.566')]
|
186 |
+
[2023-04-27 22:28:40,413][26612] Signal inference workers to resume experience collection...
|
187 |
+
[2023-04-27 22:28:40,414][26627] InferenceWorker_p0-w0: resuming experience collection
|
188 |
+
[2023-04-27 22:28:43,469][26627] Updated weights for policy 0, policy_version 10 (0.0582)
|
189 |
+
[2023-04-27 22:28:43,815][19320] Fps is (10 sec: 4505.6, 60 sec: 4505.6, 300 sec: 4505.6). Total num frames: 45056. Throughput: 0: 307.2. Samples: 3072. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
|
190 |
+
[2023-04-27 22:28:43,816][19320] Avg episode reward: [(0, '4.236')]
|
191 |
+
[2023-04-27 22:28:46,007][26627] Updated weights for policy 0, policy_version 20 (0.0008)
|
192 |
+
[2023-04-27 22:28:47,944][26627] Updated weights for policy 0, policy_version 30 (0.0012)
|
193 |
+
[2023-04-27 22:28:48,815][19320] Fps is (10 sec: 13926.4, 60 sec: 9284.3, 300 sec: 9284.3). Total num frames: 139264. Throughput: 0: 1720.3. Samples: 25804. Policy #0 lag: (min: 0.0, avg: 0.8, max: 1.0)
|
194 |
+
[2023-04-27 22:28:48,815][19320] Avg episode reward: [(0, '4.246')]
|
195 |
+
[2023-04-27 22:28:48,821][26612] Saving new best policy, reward=4.246!
|
196 |
+
[2023-04-27 22:28:50,306][26627] Updated weights for policy 0, policy_version 40 (0.0008)
|
197 |
+
[2023-04-27 22:28:50,340][19320] Heartbeat connected on Batcher_0
|
198 |
+
[2023-04-27 22:28:50,342][19320] Heartbeat connected on LearnerWorker_p0
|
199 |
+
[2023-04-27 22:28:50,349][19320] Heartbeat connected on RolloutWorker_w0
|
200 |
+
[2023-04-27 22:28:50,350][19320] Heartbeat connected on InferenceWorker_p0-w0
|
201 |
+
[2023-04-27 22:28:50,353][19320] Heartbeat connected on RolloutWorker_w2
|
202 |
+
[2023-04-27 22:28:50,356][19320] Heartbeat connected on RolloutWorker_w3
|
203 |
+
[2023-04-27 22:28:50,358][19320] Heartbeat connected on RolloutWorker_w4
|
204 |
+
[2023-04-27 22:28:50,361][19320] Heartbeat connected on RolloutWorker_w5
|
205 |
+
[2023-04-27 22:28:50,365][19320] Heartbeat connected on RolloutWorker_w6
|
206 |
+
[2023-04-27 22:28:50,366][19320] Heartbeat connected on RolloutWorker_w7
|
207 |
+
[2023-04-27 22:28:52,258][26627] Updated weights for policy 0, policy_version 50 (0.0007)
|
208 |
+
[2023-04-27 22:28:53,815][19320] Fps is (10 sec: 18432.0, 60 sec: 11468.8, 300 sec: 11468.8). Total num frames: 229376. Throughput: 0: 2718.3. Samples: 54366. Policy #0 lag: (min: 0.0, avg: 0.6, max: 1.0)
|
209 |
+
[2023-04-27 22:28:53,816][19320] Avg episode reward: [(0, '4.546')]
|
210 |
+
[2023-04-27 22:28:53,817][26612] Saving new best policy, reward=4.546!
|
211 |
+
[2023-04-27 22:28:54,878][26627] Updated weights for policy 0, policy_version 60 (0.0013)
|
212 |
+
[2023-04-27 22:28:57,353][26627] Updated weights for policy 0, policy_version 70 (0.0011)
|
213 |
+
[2023-04-27 22:28:58,815][19320] Fps is (10 sec: 17612.6, 60 sec: 12615.6, 300 sec: 12615.6). Total num frames: 315392. Throughput: 0: 2677.7. Samples: 66944. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
|
214 |
+
[2023-04-27 22:28:58,816][19320] Avg episode reward: [(0, '4.345')]
|
215 |
+
[2023-04-27 22:28:59,354][26627] Updated weights for policy 0, policy_version 80 (0.0009)
|
216 |
+
[2023-04-27 22:29:02,010][26627] Updated weights for policy 0, policy_version 90 (0.0014)
|
217 |
+
[2023-04-27 22:29:03,815][19320] Fps is (10 sec: 15974.3, 60 sec: 12970.7, 300 sec: 12970.7). Total num frames: 389120. Throughput: 0: 3074.0. Samples: 92220. Policy #0 lag: (min: 0.0, avg: 0.6, max: 1.0)
|
218 |
+
[2023-04-27 22:29:03,815][19320] Avg episode reward: [(0, '4.536')]
|
219 |
+
[2023-04-27 22:29:04,867][26627] Updated weights for policy 0, policy_version 100 (0.0020)
|
220 |
+
[2023-04-27 22:29:07,514][26627] Updated weights for policy 0, policy_version 110 (0.0011)
|
221 |
+
[2023-04-27 22:29:08,815][19320] Fps is (10 sec: 15974.6, 60 sec: 13575.3, 300 sec: 13575.3). Total num frames: 475136. Throughput: 0: 3287.9. Samples: 115078. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
|
222 |
+
[2023-04-27 22:29:08,816][19320] Avg episode reward: [(0, '4.565')]
|
223 |
+
[2023-04-27 22:29:08,829][26612] Saving new best policy, reward=4.565!
|
224 |
+
[2023-04-27 22:29:09,550][26627] Updated weights for policy 0, policy_version 120 (0.0007)
|
225 |
+
[2023-04-27 22:29:11,733][26627] Updated weights for policy 0, policy_version 130 (0.0009)
|
226 |
+
[2023-04-27 22:29:13,474][26627] Updated weights for policy 0, policy_version 140 (0.0009)
|
227 |
+
[2023-04-27 22:29:13,815][19320] Fps is (10 sec: 19251.2, 60 sec: 14540.8, 300 sec: 14540.8). Total num frames: 581632. Throughput: 0: 3246.8. Samples: 129872. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
|
228 |
+
[2023-04-27 22:29:13,816][19320] Avg episode reward: [(0, '4.521')]
|
229 |
+
[2023-04-27 22:29:15,075][26627] Updated weights for policy 0, policy_version 150 (0.0006)
|
230 |
+
[2023-04-27 22:29:16,757][26627] Updated weights for policy 0, policy_version 160 (0.0008)
|
231 |
+
[2023-04-27 22:29:18,355][26627] Updated weights for policy 0, policy_version 170 (0.0008)
|
232 |
+
[2023-04-27 22:29:18,815][19320] Fps is (10 sec: 22937.4, 60 sec: 15655.8, 300 sec: 15655.8). Total num frames: 704512. Throughput: 0: 3678.4. Samples: 165526. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
|
233 |
+
[2023-04-27 22:29:18,816][19320] Avg episode reward: [(0, '4.458')]
|
234 |
+
[2023-04-27 22:29:20,047][26627] Updated weights for policy 0, policy_version 180 (0.0008)
|
235 |
+
[2023-04-27 22:29:21,736][26627] Updated weights for policy 0, policy_version 190 (0.0009)
|
236 |
+
[2023-04-27 22:29:23,376][26627] Updated weights for policy 0, policy_version 200 (0.0009)
|
237 |
+
[2023-04-27 22:29:23,815][19320] Fps is (10 sec: 24576.1, 60 sec: 16547.9, 300 sec: 16547.9). Total num frames: 827392. Throughput: 0: 4482.5. Samples: 202364. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
|
238 |
+
[2023-04-27 22:29:23,815][19320] Avg episode reward: [(0, '4.534')]
|
239 |
+
[2023-04-27 22:29:25,033][26627] Updated weights for policy 0, policy_version 210 (0.0008)
|
240 |
+
[2023-04-27 22:29:26,702][26627] Updated weights for policy 0, policy_version 220 (0.0007)
|
241 |
+
[2023-04-27 22:29:28,383][26627] Updated weights for policy 0, policy_version 230 (0.0007)
|
242 |
+
[2023-04-27 22:29:28,815][19320] Fps is (10 sec: 24576.2, 60 sec: 17277.7, 300 sec: 17277.7). Total num frames: 950272. Throughput: 0: 4842.8. Samples: 221000. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
|
243 |
+
[2023-04-27 22:29:28,816][19320] Avg episode reward: [(0, '4.485')]
|
244 |
+
[2023-04-27 22:29:30,029][26627] Updated weights for policy 0, policy_version 240 (0.0008)
|
245 |
+
[2023-04-27 22:29:31,795][26627] Updated weights for policy 0, policy_version 250 (0.0008)
|
246 |
+
[2023-04-27 22:29:33,815][19320] Fps is (10 sec: 23346.9, 60 sec: 17681.0, 300 sec: 17681.0). Total num frames: 1060864. Throughput: 0: 5146.0. Samples: 257374. Policy #0 lag: (min: 0.0, avg: 0.6, max: 1.0)
|
247 |
+
[2023-04-27 22:29:33,816][19320] Avg episode reward: [(0, '4.669')]
|
248 |
+
[2023-04-27 22:29:33,818][26612] Saving new best policy, reward=4.669!
|
249 |
+
[2023-04-27 22:29:34,002][26627] Updated weights for policy 0, policy_version 260 (0.0008)
|
250 |
+
[2023-04-27 22:29:36,837][26627] Updated weights for policy 0, policy_version 270 (0.0010)
|
251 |
+
[2023-04-27 22:29:38,730][26627] Updated weights for policy 0, policy_version 280 (0.0007)
|
252 |
+
[2023-04-27 22:29:38,815][19320] Fps is (10 sec: 19660.9, 60 sec: 19114.7, 300 sec: 17644.3). Total num frames: 1146880. Throughput: 0: 5076.0. Samples: 282788. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
|
253 |
+
[2023-04-27 22:29:38,816][19320] Avg episode reward: [(0, '4.759')]
|
254 |
+
[2023-04-27 22:29:38,821][26612] Saving new best policy, reward=4.759!
|
255 |
+
[2023-04-27 22:29:41,483][26627] Updated weights for policy 0, policy_version 290 (0.0013)
|
256 |
+
[2023-04-27 22:29:43,815][19320] Fps is (10 sec: 16384.2, 60 sec: 19660.8, 300 sec: 17495.8). Total num frames: 1224704. Throughput: 0: 5061.7. Samples: 294720. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
|
257 |
+
[2023-04-27 22:29:43,817][19320] Avg episode reward: [(0, '4.496')]
|
258 |
+
[2023-04-27 22:29:43,996][26627] Updated weights for policy 0, policy_version 300 (0.0009)
|
259 |
+
[2023-04-27 22:29:45,921][26627] Updated weights for policy 0, policy_version 310 (0.0009)
|
260 |
+
[2023-04-27 22:29:47,745][26627] Updated weights for policy 0, policy_version 320 (0.0007)
|
261 |
+
[2023-04-27 22:29:48,815][19320] Fps is (10 sec: 17203.2, 60 sec: 19660.8, 300 sec: 17585.5). Total num frames: 1318912. Throughput: 0: 5135.5. Samples: 323316. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
|
262 |
+
[2023-04-27 22:29:48,816][19320] Avg episode reward: [(0, '4.280')]
|
263 |
+
[2023-04-27 22:29:50,625][26627] Updated weights for policy 0, policy_version 330 (0.0007)
|
264 |
+
[2023-04-27 22:29:52,896][26627] Updated weights for policy 0, policy_version 340 (0.0009)
|
265 |
+
[2023-04-27 22:29:53,815][19320] Fps is (10 sec: 17612.0, 60 sec: 19524.1, 300 sec: 17510.3). Total num frames: 1400832. Throughput: 0: 5191.6. Samples: 348700. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
|
266 |
+
[2023-04-27 22:29:53,816][19320] Avg episode reward: [(0, '4.253')]
|
267 |
+
[2023-04-27 22:29:56,313][26627] Updated weights for policy 0, policy_version 350 (0.0015)
|
268 |
+
[2023-04-27 22:29:58,498][26627] Updated weights for policy 0, policy_version 360 (0.0007)
|
269 |
+
[2023-04-27 22:29:58,815][19320] Fps is (10 sec: 15974.4, 60 sec: 19387.8, 300 sec: 17396.0). Total num frames: 1478656. Throughput: 0: 5059.1. Samples: 357532. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
|
270 |
+
[2023-04-27 22:29:58,816][19320] Avg episode reward: [(0, '4.385')]
|
271 |
+
[2023-04-27 22:30:01,271][26627] Updated weights for policy 0, policy_version 370 (0.0012)
|
272 |
+
[2023-04-27 22:30:03,815][19320] Fps is (10 sec: 14746.0, 60 sec: 19319.4, 300 sec: 17203.2). Total num frames: 1548288. Throughput: 0: 4768.2. Samples: 380094. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
|
273 |
+
[2023-04-27 22:30:03,816][19320] Avg episode reward: [(0, '4.464')]
|
274 |
+
[2023-04-27 22:30:04,133][26627] Updated weights for policy 0, policy_version 380 (0.0012)
|
275 |
+
[2023-04-27 22:30:06,244][26627] Updated weights for policy 0, policy_version 390 (0.0007)
|
276 |
+
[2023-04-27 22:30:07,903][26627] Updated weights for policy 0, policy_version 400 (0.0008)
|
277 |
+
[2023-04-27 22:30:08,815][19320] Fps is (10 sec: 18022.4, 60 sec: 19729.1, 300 sec: 17461.9). Total num frames: 1658880. Throughput: 0: 4616.3. Samples: 410098. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
|
278 |
+
[2023-04-27 22:30:08,816][19320] Avg episode reward: [(0, '4.384')]
|
279 |
+
[2023-04-27 22:30:09,574][26627] Updated weights for policy 0, policy_version 410 (0.0009)
|
280 |
+
[2023-04-27 22:30:11,225][26627] Updated weights for policy 0, policy_version 420 (0.0008)
|
281 |
+
[2023-04-27 22:30:12,922][26627] Updated weights for policy 0, policy_version 430 (0.0010)
|
282 |
+
[2023-04-27 22:30:13,815][19320] Fps is (10 sec: 23347.7, 60 sec: 20002.1, 300 sec: 17817.6). Total num frames: 1781760. Throughput: 0: 4617.6. Samples: 428792. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
|
283 |
+
[2023-04-27 22:30:13,816][19320] Avg episode reward: [(0, '4.328')]
|
284 |
+
[2023-04-27 22:30:14,554][26627] Updated weights for policy 0, policy_version 440 (0.0007)
|
285 |
+
[2023-04-27 22:30:16,206][26627] Updated weights for policy 0, policy_version 450 (0.0007)
|
286 |
+
[2023-04-27 22:30:17,871][26627] Updated weights for policy 0, policy_version 460 (0.0009)
|
287 |
+
[2023-04-27 22:30:18,815][19320] Fps is (10 sec: 24985.5, 60 sec: 20070.4, 300 sec: 18178.4). Total num frames: 1908736. Throughput: 0: 4631.5. Samples: 465790. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
|
288 |
+
[2023-04-27 22:30:18,816][19320] Avg episode reward: [(0, '4.316')]
|
289 |
+
[2023-04-27 22:30:19,460][26627] Updated weights for policy 0, policy_version 470 (0.0008)
|
290 |
+
[2023-04-27 22:30:21,046][26627] Updated weights for policy 0, policy_version 480 (0.0009)
|
291 |
+
[2023-04-27 22:30:22,710][26627] Updated weights for policy 0, policy_version 490 (0.0009)
|
292 |
+
[2023-04-27 22:30:23,815][19320] Fps is (10 sec: 24985.5, 60 sec: 20070.4, 300 sec: 18469.2). Total num frames: 2031616. Throughput: 0: 4906.8. Samples: 503596. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
|
293 |
+
[2023-04-27 22:30:23,816][19320] Avg episode reward: [(0, '4.388')]
|
294 |
+
[2023-04-27 22:30:24,368][26627] Updated weights for policy 0, policy_version 500 (0.0007)
|
295 |
+
[2023-04-27 22:30:25,982][26627] Updated weights for policy 0, policy_version 510 (0.0009)
|
296 |
+
[2023-04-27 22:30:28,815][19320] Fps is (10 sec: 20889.7, 60 sec: 19456.0, 300 sec: 18414.2). Total num frames: 2117632. Throughput: 0: 5056.4. Samples: 522256. Policy #0 lag: (min: 0.0, avg: 0.7, max: 1.0)
|
297 |
+
[2023-04-27 22:30:28,816][19320] Avg episode reward: [(0, '4.397')]
|
298 |
+
[2023-04-27 22:30:28,820][26612] Saving /home/byron/projects/rl-learning-course/unit-08/train_dir/default_experiment/checkpoint_p0/checkpoint_000000517_2117632.pth...
|
299 |
+
[2023-04-27 22:30:29,361][26627] Updated weights for policy 0, policy_version 520 (0.0015)
|
300 |
+
[2023-04-27 22:30:31,575][26627] Updated weights for policy 0, policy_version 530 (0.0009)
|
301 |
+
[2023-04-27 22:30:33,673][26627] Updated weights for policy 0, policy_version 540 (0.0007)
|
302 |
+
[2023-04-27 22:30:33,815][19320] Fps is (10 sec: 18022.5, 60 sec: 19183.0, 300 sec: 18432.0). Total num frames: 2211840. Throughput: 0: 4930.8. Samples: 545200. Policy #0 lag: (min: 0.0, avg: 0.7, max: 1.0)
|
303 |
+
[2023-04-27 22:30:33,816][19320] Avg episode reward: [(0, '4.420')]
|
304 |
+
[2023-04-27 22:30:35,975][26627] Updated weights for policy 0, policy_version 550 (0.0008)
|
305 |
+
[2023-04-27 22:30:38,045][26627] Updated weights for policy 0, policy_version 560 (0.0010)
|
306 |
+
[2023-04-27 22:30:38,815][19320] Fps is (10 sec: 18841.5, 60 sec: 19319.5, 300 sec: 18448.4). Total num frames: 2306048. Throughput: 0: 4988.7. Samples: 573190. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
|
307 |
+
[2023-04-27 22:30:38,816][19320] Avg episode reward: [(0, '4.549')]
|
308 |
+
[2023-04-27 22:30:40,672][26627] Updated weights for policy 0, policy_version 570 (0.0011)
|
309 |
+
[2023-04-27 22:30:43,150][26627] Updated weights for policy 0, policy_version 580 (0.0012)
|
310 |
+
[2023-04-27 22:30:43,815][19320] Fps is (10 sec: 17612.8, 60 sec: 19387.7, 300 sec: 18369.0). Total num frames: 2387968. Throughput: 0: 5056.8. Samples: 585088. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
|
311 |
+
[2023-04-27 22:30:43,816][19320] Avg episode reward: [(0, '4.520')]
|
312 |
+
[2023-04-27 22:30:45,278][26627] Updated weights for policy 0, policy_version 590 (0.0007)
|
313 |
+
[2023-04-27 22:30:47,790][26627] Updated weights for policy 0, policy_version 600 (0.0007)
|
314 |
+
[2023-04-27 22:30:48,815][19320] Fps is (10 sec: 17203.2, 60 sec: 19319.5, 300 sec: 18356.1). Total num frames: 2478080. Throughput: 0: 5159.8. Samples: 612286. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
|
315 |
+
[2023-04-27 22:30:48,816][19320] Avg episode reward: [(0, '4.326')]
|
316 |
+
[2023-04-27 22:30:50,346][26627] Updated weights for policy 0, policy_version 610 (0.0008)
|
317 |
+
[2023-04-27 22:30:53,815][19320] Fps is (10 sec: 14745.6, 60 sec: 18910.0, 300 sec: 18110.2). Total num frames: 2535424. Throughput: 0: 4977.5. Samples: 634084. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
|
318 |
+
[2023-04-27 22:30:53,816][19320] Avg episode reward: [(0, '4.424')]
|
319 |
+
[2023-04-27 22:30:53,893][26627] Updated weights for policy 0, policy_version 620 (0.0019)
|
320 |
+
[2023-04-27 22:30:56,047][26627] Updated weights for policy 0, policy_version 630 (0.0007)
|
321 |
+
[2023-04-27 22:30:58,480][26627] Updated weights for policy 0, policy_version 640 (0.0011)
|
322 |
+
[2023-04-27 22:30:58,815][19320] Fps is (10 sec: 14745.6, 60 sec: 19114.7, 300 sec: 18107.1). Total num frames: 2625536. Throughput: 0: 4805.1. Samples: 645020. Policy #0 lag: (min: 0.0, avg: 0.6, max: 1.0)
|
323 |
+
[2023-04-27 22:30:58,815][19320] Avg episode reward: [(0, '4.450')]
|
324 |
+
[2023-04-27 22:31:00,719][26627] Updated weights for policy 0, policy_version 650 (0.0008)
|
325 |
+
[2023-04-27 22:31:02,385][26627] Updated weights for policy 0, policy_version 660 (0.0008)
|
326 |
+
[2023-04-27 22:31:03,815][19320] Fps is (10 sec: 20070.4, 60 sec: 19797.4, 300 sec: 18240.9). Total num frames: 2736128. Throughput: 0: 4617.8. Samples: 673592. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
|
327 |
+
[2023-04-27 22:31:03,816][19320] Avg episode reward: [(0, '4.602')]
|
328 |
+
[2023-04-27 22:31:04,041][26627] Updated weights for policy 0, policy_version 670 (0.0010)
|
329 |
+
[2023-04-27 22:31:05,642][26627] Updated weights for policy 0, policy_version 680 (0.0009)
|
330 |
+
[2023-04-27 22:31:07,304][26627] Updated weights for policy 0, policy_version 690 (0.0007)
|
331 |
+
[2023-04-27 22:31:08,815][19320] Fps is (10 sec: 23756.8, 60 sec: 20070.4, 300 sec: 18471.6). Total num frames: 2863104. Throughput: 0: 4611.2. Samples: 711102. Policy #0 lag: (min: 0.0, avg: 0.6, max: 1.0)
|
332 |
+
[2023-04-27 22:31:08,816][19320] Avg episode reward: [(0, '4.465')]
|
333 |
+
[2023-04-27 22:31:08,913][26627] Updated weights for policy 0, policy_version 700 (0.0008)
|
334 |
+
[2023-04-27 22:31:10,614][26627] Updated weights for policy 0, policy_version 710 (0.0006)
|
335 |
+
[2023-04-27 22:31:12,270][26627] Updated weights for policy 0, policy_version 720 (0.0007)
|
336 |
+
[2023-04-27 22:31:13,815][19320] Fps is (10 sec: 24985.6, 60 sec: 20070.4, 300 sec: 18662.4). Total num frames: 2985984. Throughput: 0: 4608.2. Samples: 729626. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
|
337 |
+
[2023-04-27 22:31:13,816][19320] Avg episode reward: [(0, '4.396')]
|
338 |
+
[2023-04-27 22:31:13,869][26627] Updated weights for policy 0, policy_version 730 (0.0007)
|
339 |
+
[2023-04-27 22:31:15,506][26627] Updated weights for policy 0, policy_version 740 (0.0009)
|
340 |
+
[2023-04-27 22:31:17,160][26627] Updated weights for policy 0, policy_version 750 (0.0008)
|
341 |
+
[2023-04-27 22:31:18,815][19320] Fps is (10 sec: 24576.0, 60 sec: 20002.1, 300 sec: 18841.6). Total num frames: 3108864. Throughput: 0: 4932.6. Samples: 767168. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
|
342 |
+
[2023-04-27 22:31:18,816][19320] Avg episode reward: [(0, '4.364')]
|
343 |
+
[2023-04-27 22:31:18,848][26627] Updated weights for policy 0, policy_version 760 (0.0009)
|
344 |
+
[2023-04-27 22:31:21,623][26627] Updated weights for policy 0, policy_version 770 (0.0013)
|
345 |
+
[2023-04-27 22:31:23,815][19320] Fps is (10 sec: 20070.4, 60 sec: 19251.2, 300 sec: 18745.2). Total num frames: 3186688. Throughput: 0: 4907.6. Samples: 794032. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
|
346 |
+
[2023-04-27 22:31:23,816][19320] Avg episode reward: [(0, '4.513')]
|
347 |
+
[2023-04-27 22:31:24,158][26627] Updated weights for policy 0, policy_version 780 (0.0013)
|
348 |
+
[2023-04-27 22:31:26,913][26627] Updated weights for policy 0, policy_version 790 (0.0012)
|
349 |
+
[2023-04-27 22:31:28,815][19320] Fps is (10 sec: 14336.0, 60 sec: 18909.9, 300 sec: 18584.1). Total num frames: 3252224. Throughput: 0: 4932.8. Samples: 807066. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
|
350 |
+
[2023-04-27 22:31:28,815][19320] Avg episode reward: [(0, '4.367')]
|
351 |
+
[2023-04-27 22:31:30,689][26627] Updated weights for policy 0, policy_version 800 (0.0012)
|
352 |
+
[2023-04-27 22:31:33,035][26627] Updated weights for policy 0, policy_version 810 (0.0011)
|
353 |
+
[2023-04-27 22:31:33,815][19320] Fps is (10 sec: 14745.6, 60 sec: 18705.1, 300 sec: 18523.0). Total num frames: 3334144. Throughput: 0: 4712.5. Samples: 824348. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
|
354 |
+
[2023-04-27 22:31:33,816][19320] Avg episode reward: [(0, '4.320')]
|
355 |
+
[2023-04-27 22:31:35,061][26627] Updated weights for policy 0, policy_version 820 (0.0007)
|
356 |
+
[2023-04-27 22:31:37,474][26627] Updated weights for policy 0, policy_version 830 (0.0010)
|
357 |
+
[2023-04-27 22:31:38,815][19320] Fps is (10 sec: 16793.5, 60 sec: 18568.5, 300 sec: 18487.4). Total num frames: 3420160. Throughput: 0: 4863.2. Samples: 852926. Policy #0 lag: (min: 0.0, avg: 0.6, max: 1.0)
|
358 |
+
[2023-04-27 22:31:38,816][19320] Avg episode reward: [(0, '4.490')]
|
359 |
+
[2023-04-27 22:31:40,044][26627] Updated weights for policy 0, policy_version 840 (0.0007)
|
360 |
+
[2023-04-27 22:31:42,664][26627] Updated weights for policy 0, policy_version 850 (0.0014)
|
361 |
+
[2023-04-27 22:31:43,815][19320] Fps is (10 sec: 15974.4, 60 sec: 18432.0, 300 sec: 18388.9). Total num frames: 3493888. Throughput: 0: 4869.0. Samples: 864126. Policy #0 lag: (min: 0.0, avg: 0.7, max: 1.0)
|
362 |
+
[2023-04-27 22:31:43,816][19320] Avg episode reward: [(0, '4.454')]
|
363 |
+
[2023-04-27 22:31:45,339][26627] Updated weights for policy 0, policy_version 860 (0.0014)
|
364 |
+
[2023-04-27 22:31:47,414][26627] Updated weights for policy 0, policy_version 870 (0.0015)
|
365 |
+
[2023-04-27 22:31:48,815][19320] Fps is (10 sec: 16793.2, 60 sec: 18500.2, 300 sec: 18400.5). Total num frames: 3588096. Throughput: 0: 4780.7. Samples: 888726. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
|
366 |
+
[2023-04-27 22:31:48,816][19320] Avg episode reward: [(0, '4.718')]
|
367 |
+
[2023-04-27 22:31:49,524][26627] Updated weights for policy 0, policy_version 880 (0.0008)
|
368 |
+
[2023-04-27 22:31:51,616][26627] Updated weights for policy 0, policy_version 890 (0.0012)
|
369 |
+
[2023-04-27 22:31:53,815][19320] Fps is (10 sec: 18841.4, 60 sec: 19114.6, 300 sec: 18411.5). Total num frames: 3682304. Throughput: 0: 4563.8. Samples: 916472. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
|
370 |
+
[2023-04-27 22:31:53,816][19320] Avg episode reward: [(0, '4.287')]
|
371 |
+
[2023-04-27 22:31:53,847][26627] Updated weights for policy 0, policy_version 900 (0.0011)
|
372 |
+
[2023-04-27 22:31:55,513][26627] Updated weights for policy 0, policy_version 910 (0.0009)
|
373 |
+
[2023-04-27 22:31:57,111][26627] Updated weights for policy 0, policy_version 920 (0.0007)
|
374 |
+
[2023-04-27 22:31:58,754][26627] Updated weights for policy 0, policy_version 930 (0.0007)
|
375 |
+
[2023-04-27 22:31:58,815][19320] Fps is (10 sec: 22118.6, 60 sec: 19729.0, 300 sec: 18581.8). Total num frames: 3809280. Throughput: 0: 4564.9. Samples: 935046. Policy #0 lag: (min: 0.0, avg: 0.7, max: 1.0)
|
376 |
+
[2023-04-27 22:31:58,816][19320] Avg episode reward: [(0, '4.318')]
|
377 |
+
[2023-04-27 22:32:00,439][26627] Updated weights for policy 0, policy_version 940 (0.0007)
|
378 |
+
[2023-04-27 22:32:02,146][26627] Updated weights for policy 0, policy_version 950 (0.0007)
|
379 |
+
[2023-04-27 22:32:03,815][19320] Fps is (10 sec: 24576.2, 60 sec: 19865.6, 300 sec: 18705.1). Total num frames: 3928064. Throughput: 0: 4548.2. Samples: 971838. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
|
380 |
+
[2023-04-27 22:32:03,816][19320] Avg episode reward: [(0, '4.347')]
|
381 |
+
[2023-04-27 22:32:03,837][26627] Updated weights for policy 0, policy_version 960 (0.0008)
|
382 |
+
[2023-04-27 22:32:05,497][26627] Updated weights for policy 0, policy_version 970 (0.0008)
|
383 |
+
[2023-04-27 22:32:06,763][26612] Stopping Batcher_0...
|
384 |
+
[2023-04-27 22:32:06,763][26612] Saving /home/byron/projects/rl-learning-course/unit-08/train_dir/default_experiment/checkpoint_p0/checkpoint_000000978_4005888.pth...
|
385 |
+
[2023-04-27 22:32:06,763][26612] Loop batcher_evt_loop terminating...
|
386 |
+
[2023-04-27 22:32:06,763][19320] Component Batcher_0 stopped!
|
387 |
+
[2023-04-27 22:32:06,764][19320] Component RolloutWorker_w1 process died already! Don't wait for it.
|
388 |
+
[2023-04-27 22:32:06,768][26638] Stopping RolloutWorker_w7...
|
389 |
+
[2023-04-27 22:32:06,769][26638] Loop rollout_proc7_evt_loop terminating...
|
390 |
+
[2023-04-27 22:32:06,769][26630] Stopping RolloutWorker_w3...
|
391 |
+
[2023-04-27 22:32:06,769][26631] Stopping RolloutWorker_w4...
|
392 |
+
[2023-04-27 22:32:06,769][26630] Loop rollout_proc3_evt_loop terminating...
|
393 |
+
[2023-04-27 22:32:06,769][26631] Loop rollout_proc4_evt_loop terminating...
|
394 |
+
[2023-04-27 22:32:06,769][26629] Stopping RolloutWorker_w2...
|
395 |
+
[2023-04-27 22:32:06,768][19320] Component RolloutWorker_w7 stopped!
|
396 |
+
[2023-04-27 22:32:06,769][26629] Loop rollout_proc2_evt_loop terminating...
|
397 |
+
[2023-04-27 22:32:06,770][19320] Component RolloutWorker_w3 stopped!
|
398 |
+
[2023-04-27 22:32:06,770][26632] Stopping RolloutWorker_w5...
|
399 |
+
[2023-04-27 22:32:06,771][26632] Loop rollout_proc5_evt_loop terminating...
|
400 |
+
[2023-04-27 22:32:06,771][19320] Component RolloutWorker_w4 stopped!
|
401 |
+
[2023-04-27 22:32:06,772][26657] Stopping RolloutWorker_w6...
|
402 |
+
[2023-04-27 22:32:06,773][26657] Loop rollout_proc6_evt_loop terminating...
|
403 |
+
[2023-04-27 22:32:06,773][19320] Component RolloutWorker_w2 stopped!
|
404 |
+
[2023-04-27 22:32:06,774][19320] Component RolloutWorker_w5 stopped!
|
405 |
+
[2023-04-27 22:32:06,775][19320] Component RolloutWorker_w6 stopped!
|
406 |
+
[2023-04-27 22:32:06,775][26627] Weights refcount: 2 0
|
407 |
+
[2023-04-27 22:32:06,777][26627] Stopping InferenceWorker_p0-w0...
|
408 |
+
[2023-04-27 22:32:06,777][26627] Loop inference_proc0-0_evt_loop terminating...
|
409 |
+
[2023-04-27 22:32:06,777][19320] Component InferenceWorker_p0-w0 stopped!
|
410 |
+
[2023-04-27 22:32:06,786][26626] Stopping RolloutWorker_w0...
|
411 |
+
[2023-04-27 22:32:06,787][26626] Loop rollout_proc0_evt_loop terminating...
|
412 |
+
[2023-04-27 22:32:06,786][19320] Component RolloutWorker_w0 stopped!
|
413 |
+
[2023-04-27 22:32:06,811][26612] Saving /home/byron/projects/rl-learning-course/unit-08/train_dir/default_experiment/checkpoint_p0/checkpoint_000000978_4005888.pth...
|
414 |
+
[2023-04-27 22:32:06,858][26612] Stopping LearnerWorker_p0...
|
415 |
+
[2023-04-27 22:32:06,859][26612] Loop learner_proc0_evt_loop terminating...
|
416 |
+
[2023-04-27 22:32:06,859][19320] Component LearnerWorker_p0 stopped!
|
417 |
+
[2023-04-27 22:32:06,860][19320] Waiting for process learner_proc0 to stop...
|
418 |
+
[2023-04-27 22:32:07,560][19320] Waiting for process inference_proc0-0 to join...
|
419 |
+
[2023-04-27 22:32:07,561][19320] Waiting for process rollout_proc0 to join...
|
420 |
+
[2023-04-27 22:32:07,562][19320] Waiting for process rollout_proc1 to join...
|
421 |
+
[2023-04-27 22:32:07,563][19320] Waiting for process rollout_proc2 to join...
|
422 |
+
[2023-04-27 22:32:07,564][19320] Waiting for process rollout_proc3 to join...
|
423 |
+
[2023-04-27 22:32:07,564][19320] Waiting for process rollout_proc4 to join...
|
424 |
+
[2023-04-27 22:32:07,565][19320] Waiting for process rollout_proc5 to join...
|
425 |
+
[2023-04-27 22:32:07,566][19320] Waiting for process rollout_proc6 to join...
|
426 |
+
[2023-04-27 22:32:07,567][19320] Waiting for process rollout_proc7 to join...
|
427 |
+
[2023-04-27 22:32:07,567][19320] Batcher 0 profile tree view:
|
428 |
+
batching: 12.7812, releasing_batches: 0.0195
|
429 |
+
[2023-04-27 22:32:07,568][19320] InferenceWorker_p0-w0 profile tree view:
|
430 |
+
wait_policy: 0.0000
|
431 |
+
wait_policy_total: 2.8370
|
432 |
+
update_model: 2.8123
|
433 |
+
weight_update: 0.0007
|
434 |
+
one_step: 0.0023
|
435 |
+
handle_policy_step: 195.8112
|
436 |
+
deserialize: 5.6395, stack: 0.7269, obs_to_device_normalize: 44.5135, forward: 68.6296, send_messages: 17.9614
|
437 |
+
prepare_outputs: 52.0115
|
438 |
+
to_cpu: 45.1667
|
439 |
+
[2023-04-27 22:32:07,569][19320] Learner 0 profile tree view:
|
440 |
+
misc: 0.0037, prepare_batch: 9.4485
|
441 |
+
train: 22.5017
|
442 |
+
epoch_init: 0.0033, minibatch_init: 0.0045, losses_postprocess: 0.4800, kl_divergence: 0.4893, after_optimizer: 6.8805
|
443 |
+
calculate_losses: 7.1964
|
444 |
+
losses_init: 0.0020, forward_head: 0.5407, bptt_initial: 3.3368, tail: 0.4113, advantages_returns: 0.1193, losses: 1.7274
|
445 |
+
bptt: 0.9502
|
446 |
+
bptt_forward_core: 0.9150
|
447 |
+
update: 7.1922
|
448 |
+
clip: 0.8865
|
449 |
+
[2023-04-27 22:32:07,569][19320] RolloutWorker_w0 profile tree view:
|
450 |
+
wait_for_trajectories: 0.0991, enqueue_policy_requests: 5.1038, env_step: 94.9605, overhead: 6.8366, complete_rollouts: 0.2024
|
451 |
+
save_policy_outputs: 6.2491
|
452 |
+
split_output_tensors: 2.9626
|
453 |
+
[2023-04-27 22:32:07,570][19320] RolloutWorker_w7 profile tree view:
|
454 |
+
wait_for_trajectories: 0.0969, enqueue_policy_requests: 5.1019, env_step: 95.1988, overhead: 6.8454, complete_rollouts: 0.2055
|
455 |
+
save_policy_outputs: 6.4640
|
456 |
+
split_output_tensors: 3.0653
|
457 |
+
[2023-04-27 22:32:07,571][19320] Loop Runner_EvtLoop terminating...
|
458 |
+
[2023-04-27 22:32:07,572][19320] Runner profile tree view:
|
459 |
+
main_loop: 217.2086
|
460 |
+
[2023-04-27 22:32:07,573][19320] Collected {0: 4005888}, FPS: 18442.6
|
461 |
+
[2023-04-27 22:33:30,876][19320] Loading existing experiment configuration from /home/byron/projects/rl-learning-course/unit-08/train_dir/default_experiment/config.json
|
462 |
+
[2023-04-27 22:33:30,877][19320] Overriding arg 'num_workers' with value 1 passed from command line
|
463 |
+
[2023-04-27 22:33:30,878][19320] Adding new argument 'no_render'=True that is not in the saved config file!
|
464 |
+
[2023-04-27 22:33:30,878][19320] Adding new argument 'save_video'=True that is not in the saved config file!
|
465 |
+
[2023-04-27 22:33:30,879][19320] Adding new argument 'video_frames'=1000000000.0 that is not in the saved config file!
|
466 |
+
[2023-04-27 22:33:30,879][19320] Adding new argument 'video_name'=None that is not in the saved config file!
|
467 |
+
[2023-04-27 22:33:30,880][19320] Adding new argument 'max_num_frames'=1000000000.0 that is not in the saved config file!
|
468 |
+
[2023-04-27 22:33:30,881][19320] Adding new argument 'max_num_episodes'=10 that is not in the saved config file!
|
469 |
+
[2023-04-27 22:33:30,882][19320] Adding new argument 'push_to_hub'=False that is not in the saved config file!
|
470 |
+
[2023-04-27 22:33:30,882][19320] Adding new argument 'hf_repository'=None that is not in the saved config file!
|
471 |
+
[2023-04-27 22:33:30,883][19320] Adding new argument 'policy_index'=0 that is not in the saved config file!
|
472 |
+
[2023-04-27 22:33:30,883][19320] Adding new argument 'eval_deterministic'=False that is not in the saved config file!
|
473 |
+
[2023-04-27 22:33:30,884][19320] Adding new argument 'train_script'=None that is not in the saved config file!
|
474 |
+
[2023-04-27 22:33:30,885][19320] Adding new argument 'enjoy_script'=None that is not in the saved config file!
|
475 |
+
[2023-04-27 22:33:30,885][19320] Using frameskip 1 and render_action_repeat=4 for evaluation
|
476 |
+
[2023-04-27 22:33:30,891][19320] Doom resolution: 160x120, resize resolution: (128, 72)
|
477 |
+
[2023-04-27 22:33:30,892][19320] RunningMeanStd input shape: (3, 72, 128)
|
478 |
+
[2023-04-27 22:33:30,893][19320] RunningMeanStd input shape: (1,)
|
479 |
+
[2023-04-27 22:33:30,904][19320] ConvEncoder: input_channels=3
|
480 |
+
[2023-04-27 22:33:30,994][19320] Conv encoder output size: 512
|
481 |
+
[2023-04-27 22:33:30,995][19320] Policy head output size: 512
|
482 |
+
[2023-04-27 22:33:32,427][19320] Loading state from checkpoint /home/byron/projects/rl-learning-course/unit-08/train_dir/default_experiment/checkpoint_p0/checkpoint_000000978_4005888.pth...
|
483 |
+
[2023-04-27 22:33:33,708][19320] Num frames 100...
|
484 |
+
[2023-04-27 22:33:33,796][19320] Num frames 200...
|
485 |
+
[2023-04-27 22:33:33,876][19320] Num frames 300...
|
486 |
+
[2023-04-27 22:33:33,996][19320] Avg episode rewards: #0: 3.840, true rewards: #0: 3.840
|
487 |
+
[2023-04-27 22:33:33,997][19320] Avg episode reward: 3.840, avg true_objective: 3.840
|
488 |
+
[2023-04-27 22:33:34,014][19320] Num frames 400...
|
489 |
+
[2023-04-27 22:33:34,096][19320] Num frames 500...
|
490 |
+
[2023-04-27 22:33:34,173][19320] Num frames 600...
|
491 |
+
[2023-04-27 22:33:34,251][19320] Num frames 700...
|
492 |
+
[2023-04-27 22:33:34,358][19320] Avg episode rewards: #0: 3.840, true rewards: #0: 3.840
|
493 |
+
[2023-04-27 22:33:34,359][19320] Avg episode reward: 3.840, avg true_objective: 3.840
|
494 |
+
[2023-04-27 22:33:34,389][19320] Num frames 800...
|
495 |
+
[2023-04-27 22:33:34,468][19320] Num frames 900...
|
496 |
+
[2023-04-27 22:33:34,542][19320] Num frames 1000...
|
497 |
+
[2023-04-27 22:33:34,617][19320] Num frames 1100...
|
498 |
+
[2023-04-27 22:33:34,736][19320] Avg episode rewards: #0: 4.280, true rewards: #0: 3.947
|
499 |
+
[2023-04-27 22:33:34,737][19320] Avg episode reward: 4.280, avg true_objective: 3.947
|
500 |
+
[2023-04-27 22:33:34,752][19320] Num frames 1200...
|
501 |
+
[2023-04-27 22:33:34,835][19320] Num frames 1300...
|
502 |
+
[2023-04-27 22:33:34,915][19320] Num frames 1400...
|
503 |
+
[2023-04-27 22:33:34,997][19320] Num frames 1500...
|
504 |
+
[2023-04-27 22:33:35,092][19320] Num frames 1600...
|
505 |
+
[2023-04-27 22:33:35,144][19320] Avg episode rewards: #0: 4.500, true rewards: #0: 4.000
|
506 |
+
[2023-04-27 22:33:35,145][19320] Avg episode reward: 4.500, avg true_objective: 4.000
|
507 |
+
[2023-04-27 22:33:35,229][19320] Num frames 1700...
|
508 |
+
[2023-04-27 22:33:35,311][19320] Num frames 1800...
|
509 |
+
[2023-04-27 22:33:35,391][19320] Num frames 1900...
|
510 |
+
[2023-04-27 22:33:35,474][19320] Num frames 2000...
|
511 |
+
[2023-04-27 22:33:35,569][19320] Avg episode rewards: #0: 4.696, true rewards: #0: 4.096
|
512 |
+
[2023-04-27 22:33:35,570][19320] Avg episode reward: 4.696, avg true_objective: 4.096
|
513 |
+
[2023-04-27 22:33:35,617][19320] Num frames 2100...
|
514 |
+
[2023-04-27 22:33:35,698][19320] Num frames 2200...
|
515 |
+
[2023-04-27 22:33:35,772][19320] Num frames 2300...
|
516 |
+
[2023-04-27 22:33:35,849][19320] Num frames 2400...
|
517 |
+
[2023-04-27 22:33:35,932][19320] Avg episode rewards: #0: 4.553, true rewards: #0: 4.053
|
518 |
+
[2023-04-27 22:33:35,933][19320] Avg episode reward: 4.553, avg true_objective: 4.053
|
519 |
+
[2023-04-27 22:33:35,989][19320] Num frames 2500...
|
520 |
+
[2023-04-27 22:33:36,070][19320] Num frames 2600...
|
521 |
+
[2023-04-27 22:33:36,157][19320] Num frames 2700...
|
522 |
+
[2023-04-27 22:33:36,236][19320] Num frames 2800...
|
523 |
+
[2023-04-27 22:33:36,319][19320] Num frames 2900...
|
524 |
+
[2023-04-27 22:33:36,396][19320] Num frames 3000...
|
525 |
+
[2023-04-27 22:33:36,479][19320] Avg episode rewards: #0: 5.200, true rewards: #0: 4.343
|
526 |
+
[2023-04-27 22:33:36,480][19320] Avg episode reward: 5.200, avg true_objective: 4.343
|
527 |
+
[2023-04-27 22:33:36,531][19320] Num frames 3100...
|
528 |
+
[2023-04-27 22:33:36,612][19320] Num frames 3200...
|
529 |
+
[2023-04-27 22:33:36,740][19320] Avg episode rewards: #0: 4.870, true rewards: #0: 4.120
|
530 |
+
[2023-04-27 22:33:36,741][19320] Avg episode reward: 4.870, avg true_objective: 4.120
|
531 |
+
[2023-04-27 22:33:36,747][19320] Num frames 3300...
|
532 |
+
[2023-04-27 22:33:36,839][19320] Num frames 3400...
|
533 |
+
[2023-04-27 22:33:36,925][19320] Num frames 3500...
|
534 |
+
[2023-04-27 22:33:36,998][19320] Num frames 3600...
|
535 |
+
[2023-04-27 22:33:37,114][19320] Avg episode rewards: #0: 4.756, true rewards: #0: 4.089
|
536 |
+
[2023-04-27 22:33:37,115][19320] Avg episode reward: 4.756, avg true_objective: 4.089
|
537 |
+
[2023-04-27 22:33:37,136][19320] Num frames 3700...
|
538 |
+
[2023-04-27 22:33:37,237][19320] Num frames 3800...
|
539 |
+
[2023-04-27 22:33:37,323][19320] Num frames 3900...
|
540 |
+
[2023-04-27 22:33:37,407][19320] Num frames 4000...
|
541 |
+
[2023-04-27 22:33:37,512][19320] Avg episode rewards: #0: 4.664, true rewards: #0: 4.064
|
542 |
+
[2023-04-27 22:33:37,513][19320] Avg episode reward: 4.664, avg true_objective: 4.064
|
543 |
+
[2023-04-27 22:33:41,947][19320] Replay video saved to /home/byron/projects/rl-learning-course/unit-08/train_dir/default_experiment/replay.mp4!
|
544 |
+
[2023-04-27 22:36:21,719][19320] Loading existing experiment configuration from /home/byron/projects/rl-learning-course/unit-08/train_dir/default_experiment/config.json
|
545 |
+
[2023-04-27 22:36:21,720][19320] Overriding arg 'num_workers' with value 1 passed from command line
|
546 |
+
[2023-04-27 22:36:21,721][19320] Adding new argument 'no_render'=True that is not in the saved config file!
|
547 |
+
[2023-04-27 22:36:21,722][19320] Adding new argument 'save_video'=True that is not in the saved config file!
|
548 |
+
[2023-04-27 22:36:21,722][19320] Adding new argument 'video_frames'=1000000000.0 that is not in the saved config file!
|
549 |
+
[2023-04-27 22:36:21,723][19320] Adding new argument 'video_name'=None that is not in the saved config file!
|
550 |
+
[2023-04-27 22:36:21,724][19320] Adding new argument 'max_num_frames'=100000 that is not in the saved config file!
|
551 |
+
[2023-04-27 22:36:21,724][19320] Adding new argument 'max_num_episodes'=10 that is not in the saved config file!
|
552 |
+
[2023-04-27 22:36:21,725][19320] Adding new argument 'push_to_hub'=True that is not in the saved config file!
|
553 |
+
[2023-04-27 22:36:21,726][19320] Adding new argument 'hf_repository'='ItchyB/rl_course_vizdoom_health_gathering_supreme' that is not in the saved config file!
|
554 |
+
[2023-04-27 22:36:21,726][19320] Adding new argument 'policy_index'=0 that is not in the saved config file!
|
555 |
+
[2023-04-27 22:36:21,726][19320] Adding new argument 'eval_deterministic'=False that is not in the saved config file!
|
556 |
+
[2023-04-27 22:36:21,727][19320] Adding new argument 'train_script'=None that is not in the saved config file!
|
557 |
+
[2023-04-27 22:36:21,728][19320] Adding new argument 'enjoy_script'=None that is not in the saved config file!
|
558 |
+
[2023-04-27 22:36:21,729][19320] Using frameskip 1 and render_action_repeat=4 for evaluation
|
559 |
+
[2023-04-27 22:36:21,732][19320] RunningMeanStd input shape: (3, 72, 128)
|
560 |
+
[2023-04-27 22:36:21,733][19320] RunningMeanStd input shape: (1,)
|
561 |
+
[2023-04-27 22:36:21,740][19320] ConvEncoder: input_channels=3
|
562 |
+
[2023-04-27 22:36:21,763][19320] Conv encoder output size: 512
|
563 |
+
[2023-04-27 22:36:21,764][19320] Policy head output size: 512
|
564 |
+
[2023-04-27 22:36:21,791][19320] Loading state from checkpoint /home/byron/projects/rl-learning-course/unit-08/train_dir/default_experiment/checkpoint_p0/checkpoint_000000978_4005888.pth...
|
565 |
+
[2023-04-27 22:36:22,219][19320] Num frames 100...
|
566 |
+
[2023-04-27 22:36:22,339][19320] Num frames 200...
|
567 |
+
[2023-04-27 22:36:22,445][19320] Num frames 300...
|
568 |
+
[2023-04-27 22:36:22,572][19320] Num frames 400...
|
569 |
+
[2023-04-27 22:36:22,684][19320] Num frames 500...
|
570 |
+
[2023-04-27 22:36:22,754][19320] Avg episode rewards: #0: 7.120, true rewards: #0: 5.120
|
571 |
+
[2023-04-27 22:36:22,755][19320] Avg episode reward: 7.120, avg true_objective: 5.120
|
572 |
+
[2023-04-27 22:36:22,855][19320] Num frames 600...
|
573 |
+
[2023-04-27 22:36:22,974][19320] Num frames 700...
|
574 |
+
[2023-04-27 22:36:23,101][19320] Num frames 800...
|
575 |
+
[2023-04-27 22:36:23,257][19320] Avg episode rewards: #0: 5.480, true rewards: #0: 4.480
|
576 |
+
[2023-04-27 22:36:23,258][19320] Avg episode reward: 5.480, avg true_objective: 4.480
|
577 |
+
[2023-04-27 22:36:23,263][19320] Num frames 900...
|
578 |
+
[2023-04-27 22:36:23,371][19320] Num frames 1000...
|
579 |
+
[2023-04-27 22:36:23,473][19320] Num frames 1100...
|
580 |
+
[2023-04-27 22:36:23,587][19320] Num frames 1200...
|
581 |
+
[2023-04-27 22:36:23,727][19320] Avg episode rewards: #0: 4.933, true rewards: #0: 4.267
|
582 |
+
[2023-04-27 22:36:23,728][19320] Avg episode reward: 4.933, avg true_objective: 4.267
|
583 |
+
[2023-04-27 22:36:23,755][19320] Num frames 1300...
|
584 |
+
[2023-04-27 22:36:23,873][19320] Num frames 1400...
|
585 |
+
[2023-04-27 22:36:23,991][19320] Num frames 1500...
|
586 |
+
[2023-04-27 22:36:24,080][19320] Avg episode rewards: #0: 4.340, true rewards: #0: 3.840
|
587 |
+
[2023-04-27 22:36:24,081][19320] Avg episode reward: 4.340, avg true_objective: 3.840
|
588 |
+
[2023-04-27 22:36:24,143][19320] Num frames 1600...
|
589 |
+
[2023-04-27 22:36:24,240][19320] Num frames 1700...
|
590 |
+
[2023-04-27 22:36:24,341][19320] Num frames 1800...
|
591 |
+
[2023-04-27 22:36:24,432][19320] Num frames 1900...
|
592 |
+
[2023-04-27 22:36:24,562][19320] Avg episode rewards: #0: 4.768, true rewards: #0: 3.968
|
593 |
+
[2023-04-27 22:36:24,563][19320] Avg episode reward: 4.768, avg true_objective: 3.968
|
594 |
+
[2023-04-27 22:36:24,577][19320] Num frames 2000...
|
595 |
+
[2023-04-27 22:36:24,676][19320] Num frames 2100...
|
596 |
+
[2023-04-27 22:36:24,778][19320] Num frames 2200...
|
597 |
+
[2023-04-27 22:36:24,881][19320] Num frames 2300...
|
598 |
+
[2023-04-27 22:36:25,004][19320] Avg episode rewards: #0: 4.613, true rewards: #0: 3.947
|
599 |
+
[2023-04-27 22:36:25,005][19320] Avg episode reward: 4.613, avg true_objective: 3.947
|
600 |
+
[2023-04-27 22:36:25,036][19320] Num frames 2400...
|
601 |
+
[2023-04-27 22:36:25,138][19320] Num frames 2500...
|
602 |
+
[2023-04-27 22:36:25,237][19320] Num frames 2600...
|
603 |
+
[2023-04-27 22:36:25,340][19320] Num frames 2700...
|
604 |
+
[2023-04-27 22:36:25,446][19320] Avg episode rewards: #0: 4.503, true rewards: #0: 3.931
|
605 |
+
[2023-04-27 22:36:25,447][19320] Avg episode reward: 4.503, avg true_objective: 3.931
|
606 |
+
[2023-04-27 22:36:25,498][19320] Num frames 2800...
|
607 |
+
[2023-04-27 22:36:25,598][19320] Num frames 2900...
|
608 |
+
[2023-04-27 22:36:25,701][19320] Num frames 3000...
|
609 |
+
[2023-04-27 22:36:25,800][19320] Num frames 3100...
|
610 |
+
[2023-04-27 22:36:25,888][19320] Avg episode rewards: #0: 4.420, true rewards: #0: 3.920
|
611 |
+
[2023-04-27 22:36:25,889][19320] Avg episode reward: 4.420, avg true_objective: 3.920
|
612 |
+
[2023-04-27 22:36:25,969][19320] Num frames 3200...
|
613 |
+
[2023-04-27 22:36:26,076][19320] Num frames 3300...
|
614 |
+
[2023-04-27 22:36:26,181][19320] Num frames 3400...
|
615 |
+
[2023-04-27 22:36:26,281][19320] Num frames 3500...
|
616 |
+
[2023-04-27 22:36:26,354][19320] Avg episode rewards: #0: 4.356, true rewards: #0: 3.911
|
617 |
+
[2023-04-27 22:36:26,355][19320] Avg episode reward: 4.356, avg true_objective: 3.911
|
618 |
+
[2023-04-27 22:36:26,446][19320] Num frames 3600...
|
619 |
+
[2023-04-27 22:36:26,560][19320] Num frames 3700...
|
620 |
+
[2023-04-27 22:36:26,670][19320] Num frames 3800...
|
621 |
+
[2023-04-27 22:36:26,784][19320] Num frames 3900...
|
622 |
+
[2023-04-27 22:36:26,842][19320] Avg episode rewards: #0: 4.304, true rewards: #0: 3.904
|
623 |
+
[2023-04-27 22:36:26,842][19320] Avg episode reward: 4.304, avg true_objective: 3.904
|
624 |
+
[2023-04-27 22:36:30,880][19320] Replay video saved to /home/byron/projects/rl-learning-course/unit-08/train_dir/default_experiment/replay.mp4!
|