LunarLander-v2 / config.json
Ithai's picture
Upload DQN LunarLander-v2 trained agent
821e075
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVMAAAAAAAAACMHnN0YWJsZV9iYXNlbGluZXMzLmRxbi5wb2xpY2llc5SMCURRTlBvbGljeZSTlC4=", "__module__": "stable_baselines3.dqn.policies", "__doc__": "\n Policy class with Q-Value Net and target net for DQN\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function DQNPolicy.__init__ at 0x7ff6cfb79820>", "_build": "<function DQNPolicy._build at 0x7ff6cfb798b0>", "make_q_net": "<function DQNPolicy.make_q_net at 0x7ff6cfb79940>", "forward": "<function DQNPolicy.forward at 0x7ff6cfb799d0>", "_predict": "<function DQNPolicy._predict at 0x7ff6cfb79a60>", "_get_constructor_parameters": "<function DQNPolicy._get_constructor_parameters at 0x7ff6cfb79af0>", "set_training_mode": "<function DQNPolicy.set_training_mode at 0x7ff6cfb79b80>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7ff6cfb7d480>"}, "verbose": 1, "policy_kwargs": {"net_arch": [256, 256]}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVLgsAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwSX19yYW5kb21zdGF0ZV9jdG9ylJOUjAdNVDE5OTM3lIWUUpR9lCiMDWJpdF9nZW5lcmF0b3KUaBOMBXN0YXRllH2UKIwDa2V5lIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolsAJAAAAAAAA9VcbOA57DzBkG1X78RSCXqdfMAWKSFCoaP79DhMD/jzCeAYewafpAjCQaXKUJBBxTxkvT/DZxwX3nG5Sja8zbkF4Sc/Mu8XszZ4aIX7A4r+uWGF0pjML71K1jw6Jf/RmTdIsig3CehZaxpew88UMc0W6aEmK+llgXpmzJj6Rl8WlRGoW2qwucFsCetlH3mztJxibaOqOMUy3mUjTQQHs+87DGMnXRdmB2GwU48NMuYhA9qjx0l0YHLghYJMQno2f8r+6fKaZ+/HUrdK8+Egr1CfJW1egbAWJUlGwmTA7jAsj4PeOH+a77W2FhiwvlB18O7fli4/TFmMxFe/S3CTkzSyjxsPzrAqsew9639s2DWAghcUfKZgCloRkg67x395PDNHqjXmehTIQUw7SlNqlWAL9jNrfNgHgzbxB3HeQvrpt6ywZyMBVnAyCB4zBaEmeQqr09PMIdzEJH2bs+8JTydUluQTraaWKWU/QUNygrKQyR/EfosAhcIdbgi97w1Be4wt3xWrNgYcJc0UZaI5QBs2FDLhu/jRK2NNcakp5FxAYJQUL1yvw1F792Vg5OQREfKYdVlJmfyo0kkuNccjd3kWzSDwQBhZFP2KXctwLdHv8DvmWB89m0Avw97L53I7nFESpMI8QIJ3rVS+teQ39EMPA1Wr9glp4PYi+iyAl7jN9pZ+rObunqfSN81r/P+s7WaANUBunP9d5cqsS3XykfI8/QrGw9QT4/dKOb/z0HTPjDbtoJQ1baczMMTpnK80EVaoE3UwkO0sug1oLwFAz7x4j5ZIaeFVPKduw4bltgb0qjMGEFz0DkV+601hQKxYqzHdyd7wgHunYgyM5tDC/Ff9vCknEDPiy+Ec7+nEDRyfax1jt2AJBOW4J7FLrZt/gtvvlXyvooIeQrsIO9k2X0uixQ8Ajfo35aAIGbZZeEi1uR9zk/yX5ILslAW1s1EsKPj7LRB3GWxR0x9umKxFSwoQ4kIqPtPOWZjrMVTUeLJEdf/cGTdpcStbpTIXRYYDwLEZBe7GgGReZZl4EownNVNmyYJQmx6m2/iS3eNG/FXLcPyvwZ2aTJwzVEjiKf4KvD+cJMeeJh0KmtjqJgua0TP1NjMAAzFw/3Kez5JtyMi2Mc03Yrh+O7OET6BzFCVd3CyU0owpasqXADDAdKgovy5SfZDBfSz3Gpd17qpchHRBuF+wNvoQ6E7Vda747ix9pKWJQoaL7DUDcrWiwkTlIxbEutuOYyJ77wsNh6zYF3lU5J1J710u19t0C6+wvyhkLi4KWE9BxQe52KgapBtWwaQm6tgtC4HbTpYxWG/GsWvqReRTH64NdSUfdFjX2vvR+Ul35Tmld0mlKKFRV+dS+QVZ8ACFES1ltgVEmKjNNl1VtdCo8iMh3f08JlFJ49N5C5i7Y7M2HO23RKjn72nZOXdSfR9RTHE7D56V366FPInQec5rjWHdCRnziwGynA9D6qq6wVhBuWHFeRrLp1F+bKvwCyah6lg4A1voDSt+MXgykEObb07bzlwUCJQ2xdXNYMKlzNyi7JYonr4P5mZw1J62UZWRMCOlrwFO785q2N6KSvBA7wJmfu95deO0WBZ3BCHPUQ2gwlGheGnHR4bn5+W5LYKdYoUio7S80/b9TfYwjD5+W2pIQEDP2ReHr+YhDKe8nPEPKjRCBebw6sw4o5HpkXub1oabL4UoE2Zmt6DdIPpLDklQfS+K0h4y6zf5OW7TLgTF/BFgST8x3/VbSee8nSO7puG+GIvGu8++cmE5DUAgY68Qbf25TohEZpxVErjT8mJ3f9DHS1zN2C0/pSHYIt9GUhPeuB6gg8aCBbMiGmj8anNFEJA69M54DjOdy+wJQu1dZVw7UoOPt8c0j0cy3RD/usNRfC/RAxXnH+XSXuLI3l5R8UMc7+N5N/dSMBSi9bGtvWRGEry6HUH1IEg+17T9baNMsedzYgA9i/ldGSAVgkD02wF8F+FXLTMdF+j8n7tSIY3wz1bTeaLA0kSpmQQe5IX1u1ksRcrLNNYaBLZcE2PBrozrMZMhjuJBkK2bmLkrgXWGvcS6YdadIfCW+Cj+kIzcIfkFu7kqReoCG3EP31cfMW8Bxnpn7z+uUvrrKLD6mTkqyJF++Lk+r6PPDL98h0bnA6yAunD/bhfmYaPAWS2sPToRKmIF/Cm64JXDY/GIbkw7Vu+vo+SnZL3Qh7z8TbI5Y9ZcUegPr20xSQjjq7a+rTCG0jsAs2W2rYvrNFB64WUWlKu4pVo3CTYjiq+pwmhcgdcqv46Al41ANcfbbFMEj+tHtH1jPt/T58u93LOi4TB1rBpauN0fOeBmWkW1wqUyWZv5yJjpNIKTDB4EWSzuEuVU64w10eSdZGQZ0GHwweadoeB9AT4QOHv0nfbwEQue+gGukVbU/h5i9fBATMlnAn3VHatfMYjhefkAyXkVXApaj2eJmuZqRVM2cuR5MLIddNNNYldxoX7y5ClutJ0+FLj+iVf9RndZ83e9JfUCRnjT1LBrcWCQxWu7k3o4r2KXPnQlUIcvhzi9wItgArxtnbwuQHjQ0XvP9joViEOFgp0l16Bv+cA2Np3TgUVIgEubFLlgBrtdPiMbP5gteZd7EO1KsBI67Af/sVJouTuadWrhBOCo3Ut3OUj+pTUaSwkZrmsM6uw6EnlnKcXTpd5xMljiarsOYLWnsJpPCltm6ZnSs4Op7ZMcMbbSFsT+EQukqYZo9rQhJaTMF2SbnguEailihTYnrl16pwXvoTdtfMwjzCo59rOApXaG3T2EGT1jce82XABcTXIzEoeb1BAx6LB2teeM1M7eqjf4B5pbm4SMMt6OeOycL4yhb1ckGZA0n88LjbRp3LQFq93/SXJzFIP+D9xySCPzmSSxG5pEoYcrlgrCU5y09TBiy00XysW5zhM61Nv+NojH2cRibahQqYuL5aorTyc+FBEPMZsbN1vesNMlNTtSGBPbmfqvaAn/3XQlLpsW5J8aHeLXSqCzUf6bwg9Ip8f32/EcWyEsD4qALj3AAlrmZzdB5nBc3ITQDxjfP30ZVTv2bY2UsFB2ZUAI97TzyJAPUhdULf7vUMUz8iNbIIEdR3uNHH8ZT8VgzArgcXKCmC/ii/2h/oCsLONMjKlIItu4je7Xg8nibP0Jgzc1eD+tSoq2q88burzzaJhZheIrJotM0exukoYvRUBTSI2dGKucdFrUzXkyzWDMFqnMySmxTdBeIxKHuQJLTd8skuRhzreV3nEw8bL5fHYQSeknv1m0/6AnhwUJD7V6GhtEi73IEpjJ2+9Dv5dcYOU1FSng55s2J64kM8RQjszBFtSOboc/plGgJjAJ1NJSJiIeUUpQoSwNoDU5OTkr/////Sv////9LAHSUYk1wAoWUjAFDlHSUUpSMA3Bvc5RLUHWMCWhhc19nYXVzc5RLAIwFZ2F1c3OURwAAAAAAAAAAdWJ1Yi4=", "n": 4, "_shape": [], "dtype": "int64", "_np_random": "RandomState(MT19937)"}, "n_envs": 16, "num_timesteps": 500000, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1676458621898636939, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADPhSz17LJu6Wuvws2JmA6/QVvW6IDyhMwAAgD8AAIA/wNPwPSmraLyz7uk6xFT3PMxLjz0I3EO8AACAPwAAgD9NAJ497EnZuX61gjozMRg2dWimOoeTmbkAAIA/AACAP5r26L3B2Io/u8JdvmThOr8aj3G++EXevQAAAAAAAAAAAEYoPV+jfz/+ids9UnZ0vzZWGz2TTIY4AAAAAAAAAAAzE9+7j54vutHSgDzJri+zq7yqO5LsULMAAIA/AACAP4DXFD1ScNO5ZqlyM7c2fCxKFpI6H2iuswAAgD8AAIA/sOxXvsUqIj+lsZg9IgFEv0xrDb6wV189AAAAAAAAAAANGYw9w4VmOWYahTpXR4o1Zk2nudYpnrkAAIA/AACAP5pxDrwK93+7Xlh7Ppy2zzxrfgW9QsquPQAAgD8AAIA/AAVjPYVWvrtD4ck8RTH2Oy11JT1wWd68AACAPwAAgD+aWv4911Usu6z+JDsUUF25vBmJvE5fR7oAAIA/AACAP4BmOb1V3aA/sE+4vg+fQb+F5ym9e2mIvgAAAAAAAAAAAHzOOymIcLqA8/KzmpXaLRBZzbrUvpUzAACAPwAAgD+mkuW9PfB9PjMcjD5rlCS/SLnJvPr2Zj0AAAAAAAAAADNTYTpSkMi5OLElNMeD+C+oinm56eOlswAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAEBAQEBAQEBAQEBAQEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADPhSz17LJu6ENUytNMAlq7VVvW6YlebMwAAgD8AAIA/jc3wPbbJc7zKjmm8qC8IPS6FkD3q2si8AACAPwAAgD8a+509hVPZuV5I6Dpr3GI2uWCoOpJxCLoAAIA/AACAPyZr5L1Y8ow/nq1Vvg9sNL+MAGy+ajMRvgAAAAAAAAAA5uEjPb2Rgj/+ids9sqJtv9lSGz24Q4Y4AAAAAAAAAABmOuS7j54vuuIqrzxSSwK2nryqO/WW9rQAAIA/AACAP4DXFD1ScNO5FGwoNSc8iDCaFpI6xkVZtAAAgD8AAIA/ULdYviGUJj8CXIE9bLZKv/41EL4OzF49AAAAAAAAAADaE4w9w4VmOc2a6jrmj8g1RDCfubFkC7oAAIA/AACAPwBeN7w4mpK7qH50PtExHz3x+Ba9PvCdPQAAgD8AAIA/GhFiPbjZw7uVMbg8tQMZPE0EKz3XEge9AACAPwAAgD+aTf49pAYsu5sfHTuT+4u4+smIvBAGR7oAAIA/AACAP5oaKr29CqM/PPm9viLXOr9rsOa8wKdjvgAAAAAAAAAAAHzOOymIcLpJ7yW03m5HsF5Zzbp5DKEzAACAPwAAgD9aPOu9OWCGPuqxkD4vvh2/+9HgvK5KqDwAAAAAAAAAADNTYTpSkMi5uSo9NKsdIK6MiHm5j4eeswAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_episode_num": 1232, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 3.2000000000032e-05, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVQhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIaFpiZTRuckCUhpRSlIwBbJRLtYwBdJRHQJDCIXfqHGl1fZQoaAZoCWgPQwj4GRcOBCxxQJSGlFKUaBVNNgFoFkdAkMIi+6Ae73V9lChoBmgJaA9DCF2G/3SDZnFAlIaUUpRoFU0zAWgWR0CQwmZ6D5CXdX2UKGgGaAloD0MIhX07iUhNc0CUhpRSlGgVTVUBaBZHQJDCgFOfukV1fZQoaAZoCWgPQwhK1As+zepwQJSGlFKUaBVNOgFoFkdAkMLQJPZZjnV9lChoBmgJaA9DCLZJRWNtmXFAlIaUUpRoFUvHaBZHQJDDPIn0Cih1fZQoaAZoCWgPQwg5tMh2vucpQJSGlFKUaBVLZmgWR0CQznocrAgxdX2UKGgGaAloD0MIzNHj97ZfcUCUhpRSlGgVTfYCaBZHQJDR5N+LFXJ1fZQoaAZoCWgPQwg3iUFgZXFzQJSGlFKUaBVNGgFoFkdAkNMSwSrYG3V9lChoBmgJaA9DCIwxsI6jBnJAlIaUUpRoFUvkaBZHQJDVj1oQFs51fZQoaAZoCWgPQwjuYMQ+gUVyQJSGlFKUaBVL7WgWR0CQ2jJo0ygxdX2UKGgGaAloD0MIPkD35cwcS0CUhpRSlGgVS1poFkdAkNrc76pHZ3V9lChoBmgJaA9DCInUtItpdXJAlIaUUpRoFU06AWgWR0CQ4ZZXdTHbdX2UKGgGaAloD0MI0uEhjF/Lc0CUhpRSlGgVTbgBaBZHQJDhreDWbw11fZQoaAZoCWgPQwjfb7TjRghyQJSGlFKUaBVNQQFoFkdAkOHTEehf0HV9lChoBmgJaA9DCC9tOCyNeG5AlIaUUpRoFU1BAWgWR0CQ4dOYIBzWdX2UKGgGaAloD0MIrMWnANijckCUhpRSlGgVTUwBaBZHQJDh7WkJrtV1fZQoaAZoCWgPQwgc0T3rGh1yQJSGlFKUaBVNOQFoFkdAkOHr/S6UaHV9lChoBmgJaA9DCKoKDcRyzXBAlIaUUpRoFU2hAmgWR0CQ4lXXRPXTdX2UKGgGaAloD0MIZ+4h4btrc0CUhpRSlGgVS95oFkdAkOJVE3KjjHV9lChoBmgJaA9DCGbc1EAzAXFAlIaUUpRoFU18AWgWR0CQ5HAQg9vCdX2UKGgGaAloD0MI2Vw1z9Gec0CUhpRSlGgVTX8DaBZHQJDkcNe+mFd1fZQoaAZoCWgPQwjFPCtpRblxQJSGlFKUaBVN6gFoFkdAkOTJeVs1sXV9lChoBmgJaA9DCLWNP1HZSkZAlIaUUpRoFUtUaBZHQJDorXrdFfB1fZQoaAZoCWgPQwhh4o+izg9yQJSGlFKUaBVNNAFoFkdAkOwHxnWat3V9lChoBmgJaA9DCM+Du7N24UNAlIaUUpRoFUuGaBZHQJDsSA5Jbt91fZQoaAZoCWgPQwh/NJwy97xxQJSGlFKUaBVL7WgWR0CQ7hKzRhMKdX2UKGgGaAloD0MIN8R4zSvwcUCUhpRSlGgVTTwBaBZHQJDwLMr3Cbd1fZQoaAZoCWgPQwhLyt3nOFhxQJSGlFKUaBVLu2gWR0CQ8IemelKsdX2UKGgGaAloD0MICaUvhJzocECUhpRSlGgVS8FoFkdAkPDnf2saKnV9lChoBmgJaA9DCElpNo+Df3NAlIaUUpRoFU0MAWgWR0CQ8SFfAsTWdX2UKGgGaAloD0MIhhxbz1B/ckCUhpRSlGgVS8poFkdAkPIF3pwCKnV9lChoBmgJaA9DCPT7/s0LJnBAlIaUUpRoFUvRaBZHQJDyR0zTF2p1fZQoaAZoCWgPQwjxvb9Be8ZUQJSGlFKUaBVLeGgWR0CQ9acT8HfNdX2UKGgGaAloD0MIxt/2BIlaUkCUhpRSlGgVS4BoFkdAkPYYWxhUi3V9lChoBmgJaA9DCCjwTj491kRAlIaUUpRoFUtvaBZHQJD3JamoBJZ1fZQoaAZoCWgPQwjEzD6PUbxLQJSGlFKUaBVLWmgWR0CQ990aqCHzdX2UKGgGaAloD0MIUYL+Qs87ckCUhpRSlGgVTTIBaBZHQJD//aRISUV1fZQoaAZoCWgPQwil8+FZAnpyQJSGlFKUaBVLn2gWR0CRAu+lj3EidX2UKGgGaAloD0MIZyeDo6Rsc0CUhpRSlGgVTVoBaBZHQJEEcir1dxB1fZQoaAZoCWgPQwg6XKs9LHBwQJSGlFKUaBVNIwFoFkdAkQS/ixVyWHV9lChoBmgJaA9DCEoIVtXLWnFAlIaUUpRoFU2AAWgWR0CRBVTA31jBdX2UKGgGaAloD0MIPggB+ZJIcUCUhpRSlGgVS69oFkdAkQVc2NvOyHV9lChoBmgJaA9DCAfTMHxEuE1AlIaUUpRoFUuCaBZHQJEPHUSZjQR1fZQoaAZoCWgPQwihZkgVxa82QJSGlFKUaBVLZmgWR0CREGlVcUuddX2UKGgGaAloD0MIwocSLbmFcUCUhpRSlGgVS/BoFkdAkREUj9n9N3V9lChoBmgJaA9DCCDsFKsGSnBAlIaUUpRoFUvsaBZHQJERKc0+C9R1fZQoaAZoCWgPQwizB1qBoc1wQJSGlFKUaBVLmGgWR0CRFMMS9M9KdX2UKGgGaAloD0MIKqc9JedgSUCUhpRSlGgVS7ZoFkdAkRcOFHrhSHV9lChoBmgJaA9DCNfDl4ki2G1AlIaUUpRoFUu6aBZHQJEXPeIl+mZ1fZQoaAZoCWgPQwgaa39nO1FxQJSGlFKUaBVNeQFoFkdAkRc+wX668XV9lChoBmgJaA9DCHzw2qWNCnFAlIaUUpRoFUvGaBZHQJEXPZ9NN8F1fZQoaAZoCWgPQwiU9gZfWMxwQJSGlFKUaBVNdAFoFkdAkRc9F4LThHV9lChoBmgJaA9DCMTNqWRAGnFAlIaUUpRoFUuIaBZHQJEcbm+0w8J1fZQoaAZoCWgPQwjScTWyq+JjQJSGlFKUaBVN6ANoFkdAkR0ifthNNHV9lChoBmgJaA9DCP0S8db5dUtAlIaUUpRoFUuPaBZHQJEj3JU5uIh1fZQoaAZoCWgPQwjgL2ZLVk1tQJSGlFKUaBVL6WgWR0CRJeS8rZrYdX2UKGgGaAloD0MITFMEOP1+cUCUhpRSlGgVS+poFkdAkSXjXjENv3V9lChoBmgJaA9DCKCJsOFpFXFAlIaUUpRoFU0DAWgWR0CRJkP420iRdX2UKGgGaAloD0MI/3kaMEiScUCUhpRSlGgVS7hoFkdAkSeTl5nlGXV9lChoBmgJaA9DCHzysFBrrm9AlIaUUpRoFUvJaBZHQJEpWzcAR051fZQoaAZoCWgPQwiox7YMOLFwQJSGlFKUaBVNBANoFkdAkSnYSteUp3V9lChoBmgJaA9DCBKDwMohL29AlIaUUpRoFU3kAmgWR0CRKgT5O8CgdX2UKGgGaAloD0MIWFaalAIjcUCUhpRSlGgVS/VoFkdAkS1P07KaHHV9lChoBmgJaA9DCDHQtS/gBnRAlIaUUpRoFUv6aBZHQJEtwIu5BkZ1fZQoaAZoCWgPQwioHmlw22htQJSGlFKUaBVNFwFoFkdAkS329pRGdHV9lChoBmgJaA9DCLmJWprbKXBAlIaUUpRoFUvEaBZHQJEuMy0rsjV1fZQoaAZoCWgPQwjoacAgaehwQJSGlFKUaBVNKwJoFkdAkS52K/EfknV9lChoBmgJaA9DCOfib3uC/XBAlIaUUpRoFUv4aBZHQJEzFGPPszF1fZQoaAZoCWgPQwig3SHFADtAQJSGlFKUaBVLaWgWR0CRNzT7VJ+VdX2UKGgGaAloD0MIgXueP+2mb0CUhpRSlGgVS6FoFkdAkTjLSNOuaHV9lChoBmgJaA9DCAwEATI0XHFAlIaUUpRoFUvkaBZHQJE4/3g1m8N1fZQoaAZoCWgPQwg7qwX2WFtzQJSGlFKUaBVL0GgWR0CROS4hEBsAdX2UKGgGaAloD0MIi1BsBU23b0CUhpRSlGgVS9BoFkdAkTkvB3zMA3V9lChoBmgJaA9DCDgvTnx1vnBAlIaUUpRoFUvMaBZHQJE5MHNX5nF1fZQoaAZoCWgPQwiXVkPiHh5zQJSGlFKUaBVL82gWR0CRQSDuSfUXdX2UKGgGaAloD0MIfERMiSS6R0CUhpRSlGgVS15oFkdAkUHF1B+nZXV9lChoBmgJaA9DCLa8cr1txHJAlIaUUpRoFU0EAWgWR0CRQ+D7IkqudX2UKGgGaAloD0MIZd6q6xDocECUhpRSlGgVS91oFkdAkUPiVbA1vXV9lChoBmgJaA9DCABV3LiFvnJAlIaUUpRoFUvTaBZHQJFD4sunMt91fZQoaAZoCWgPQwg49BYPrzlwQJSGlFKUaBVL0GgWR0CRQ+N0eU6gdX2UKGgGaAloD0MIasL2kzHiNkCUhpRSlGgVS2hoFkdAkUUZ+H8CP3V9lChoBmgJaA9DCMufbwsWwHFAlIaUUpRoFUvZaBZHQJFLs9fTkQx1fZQoaAZoCWgPQwgEAp1JG5lwQJSGlFKUaBVLwWgWR0CRToESuhbodX2UKGgGaAloD0MIUI2XbhLHNUCUhpRSlGgVS2doFkdAkU+/rrxAjnV9lChoBmgJaA9DCK5KIvugfnFAlIaUUpRoFUvgaBZHQJFROaYu01J1fZQoaAZoCWgPQwhgyOpWT5lyQJSGlFKUaBVL5GgWR0CRUVkeIVM3dX2UKGgGaAloD0MIejnsvuNRcUCUhpRSlGgVS+JoFkdAkVFoCuEEknV9lChoBmgJaA9DCJfhP91AxHBAlIaUUpRoFU1eAWgWR0CRUc0HyEtedX2UKGgGaAloD0MIUwYOaOlxckCUhpRSlGgVTaYBaBZHQJFR9V/+bVl1fZQoaAZoCWgPQwj0Fg/vue9gQJSGlFKUaBVN6ANoFkdAkVQE/B3zMHV9lChoBmgJaA9DCNs0ttfCw3JAlIaUUpRoFUvDaBZHQJFUlhTfixV1fZQoaAZoCWgPQwg5e2e0VatQQJSGlFKUaBVLeWgWR0CRVdbutwJgdX2UKGgGaAloD0MIw2aAC7JLTUCUhpRSlGgVS2VoFkdAkVbsrd30PHV9lChoBmgJaA9DCG+6ZYf4E0BAlIaUUpRoFUtmaBZHQJFYNnM+u/11fZQoaAZoCWgPQwjWxAJf0X5zQJSGlFKUaBVL8GgWR0CRWjiZv1lHdX2UKGgGaAloD0MIRu7p6g6fYUCUhpRSlGgVTegDaBZHQJFab/dZaFF1fZQoaAZoCWgPQwhQOLu1zOBwQJSGlFKUaBVNIwFoFkdAkV5VU+9rXXV9lChoBmgJaA9DCOLIA5EFD3BAlIaUUpRoFUukaBZHQJFelccENfB1fZQoaAZoCWgPQwiCyY0iaxBvQJSGlFKUaBVLuWgWR0CRYLMkyDZldWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 124996, "buffer_size": 100000, "batch_size": 128, "learning_starts": 0, "tau": 1.0, "gamma": 0.99, "gradient_steps": 4, "optimize_memory_usage": false, "replay_buffer_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVNQAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwMUmVwbGF5QnVmZmVylJOULg==", "__module__": "stable_baselines3.common.buffers", "__doc__": "\n Replay buffer used in off-policy algorithms like SAC/TD3.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device: PyTorch device\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n of the replay buffer which reduces by almost a factor two the memory used,\n at a cost of more complexity.\n See https://github.com/DLR-RM/stable-baselines3/issues/37#issuecomment-637501195\n and https://github.com/DLR-RM/stable-baselines3/pull/28#issuecomment-637559274\n Cannot be used in combination with handle_timeout_termination.\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n ", "__init__": "<function ReplayBuffer.__init__ at 0x7ff6cfbc7940>", "add": "<function ReplayBuffer.add at 0x7ff6cfbc79d0>", "sample": "<function ReplayBuffer.sample at 0x7ff6cfbc7a60>", "_get_samples": "<function ReplayBuffer._get_samples at 0x7ff6cfbc7af0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7ff6cfbc9b40>"}, "replay_buffer_kwargs": {}, "train_freq": {":type:": "<class 'stable_baselines3.common.type_aliases.TrainFreq'>", ":serialized:": "gAWVYQAAAAAAAACMJXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi50eXBlX2FsaWFzZXOUjAlUcmFpbkZyZXGUk5RLAWgAjBJUcmFpbkZyZXF1ZW5jeVVuaXSUk5SMBHN0ZXCUhZRSlIaUgZQu"}, "actor": null, "use_sde_at_warmup": false, "exploration_initial_eps": 1.0, "exploration_final_eps": 0.05, "exploration_fraction": 0.08, "target_update_interval": 1, "_n_calls": 31249, "max_grad_norm": 10, "exploration_rate": 0.05, "exploration_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVZwMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLBEsTQyxkAXwAGACIAWsEchCIAFMAiAJkAXwAGACIAIgCGAAUAIgBGwAXAFMAZABTAJROSwGGlCmMEnByb2dyZXNzX3JlbWFpbmluZ5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy44L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLcEMGAAEMAQQClIwDZW5klIwMZW5kX2ZyYWN0aW9ulIwFc3RhcnSUh5QpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy44L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUaB0pUpRoHSlSlIeUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgjfZR9lChoGGgNjAxfX3F1YWxuYW1lX1+UjBtnZXRfbGluZWFyX2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZQoaAqMCGJ1aWx0aW5zlIwFZmxvYXSUk5SMBnJldHVybpRoL3WMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgZjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz+pmZmZmZmahZRSlGg3Rz+0euFHrhR7hZRSlGg3Rz/wAAAAAAAAhZRSlIeUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "batch_norm_stats": [], "batch_norm_stats_target": [], "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}