Ivanrs commited on
Commit
03d040e
·
verified ·
1 Parent(s): 763c7a2

vit-base-kidney-stone-Michel_Daudon_-w256_1k_v1-_MIX

Browse files
README.md CHANGED
@@ -26,31 +26,30 @@ model-index:
26
  metrics:
27
  - name: Accuracy
28
  type: accuracy
29
- value: 0.8870833333333333
30
  - name: Precision
31
  type: precision
32
- value: 0.8988360882885232
33
  - name: Recall
34
  type: recall
35
- value: 0.8870833333333333
36
  - name: F1
37
  type: f1
38
- value: 0.8880432263296901
39
  ---
40
 
41
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
42
  should probably proofread and complete it, then remove this comment. -->
43
 
44
- [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/cv-inside/vit-base-kidney-stone/runs/bhdwgbgx)
45
  # vit-base-kidney-stone-Michel_Daudon_-w256_1k_v1-_MIX
46
 
47
  This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset.
48
  It achieves the following results on the evaluation set:
49
- - Loss: 0.4892
50
- - Accuracy: 0.8871
51
- - Precision: 0.8988
52
- - Recall: 0.8871
53
- - F1: 0.8880
54
 
55
  ## Model description
56
 
@@ -75,103 +74,58 @@ The following hyperparameters were used during training:
75
  - seed: 42
76
  - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
77
  - lr_scheduler_type: linear
78
- - num_epochs: 30
79
  - mixed_precision_training: Native AMP
80
 
81
  ### Training results
82
 
83
  | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
84
  |:-------------:|:-------:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|
85
- | 0.3419 | 0.3333 | 100 | 0.5920 | 0.8104 | 0.8329 | 0.8104 | 0.8037 |
86
- | 0.1693 | 0.6667 | 200 | 0.6791 | 0.8054 | 0.8274 | 0.8054 | 0.8085 |
87
- | 0.1732 | 1.0 | 300 | 0.7756 | 0.7979 | 0.8415 | 0.7979 | 0.7981 |
88
- | 0.0691 | 1.3333 | 400 | 0.7158 | 0.8158 | 0.8508 | 0.8158 | 0.8188 |
89
- | 0.0714 | 1.6667 | 500 | 0.7522 | 0.8317 | 0.8499 | 0.8317 | 0.8266 |
90
- | 0.0673 | 2.0 | 600 | 0.5385 | 0.8621 | 0.8655 | 0.8621 | 0.8598 |
91
- | 0.0655 | 2.3333 | 700 | 0.7799 | 0.8433 | 0.8497 | 0.8433 | 0.8359 |
92
- | 0.0135 | 2.6667 | 800 | 0.6978 | 0.8396 | 0.8529 | 0.8396 | 0.8413 |
93
- | 0.0075 | 3.0 | 900 | 1.0180 | 0.8104 | 0.8370 | 0.8104 | 0.8161 |
94
- | 0.0338 | 3.3333 | 1000 | 0.7638 | 0.8429 | 0.8601 | 0.8429 | 0.8422 |
95
- | 0.0488 | 3.6667 | 1100 | 1.0401 | 0.7983 | 0.8228 | 0.7983 | 0.7986 |
96
- | 0.0794 | 4.0 | 1200 | 0.7388 | 0.8496 | 0.8497 | 0.8496 | 0.8481 |
97
- | 0.0034 | 4.3333 | 1300 | 0.9749 | 0.8279 | 0.8427 | 0.8279 | 0.8252 |
98
- | 0.0276 | 4.6667 | 1400 | 1.1395 | 0.8067 | 0.8351 | 0.8067 | 0.8116 |
99
- | 0.0855 | 5.0 | 1500 | 0.6391 | 0.8729 | 0.8860 | 0.8729 | 0.8763 |
100
- | 0.0256 | 5.3333 | 1600 | 1.0149 | 0.8108 | 0.8289 | 0.8108 | 0.8105 |
101
- | 0.0017 | 5.6667 | 1700 | 0.9153 | 0.8279 | 0.8575 | 0.8279 | 0.8299 |
102
- | 0.0393 | 6.0 | 1800 | 1.0392 | 0.8175 | 0.8205 | 0.8175 | 0.8169 |
103
- | 0.0031 | 6.3333 | 1900 | 0.4892 | 0.8871 | 0.8988 | 0.8871 | 0.8880 |
104
- | 0.1446 | 6.6667 | 2000 | 0.8977 | 0.8187 | 0.8362 | 0.8187 | 0.8177 |
105
- | 0.0176 | 7.0 | 2100 | 0.6661 | 0.8608 | 0.8756 | 0.8608 | 0.8637 |
106
- | 0.0312 | 7.3333 | 2200 | 0.7722 | 0.8408 | 0.8520 | 0.8408 | 0.8412 |
107
- | 0.0018 | 7.6667 | 2300 | 0.8194 | 0.8483 | 0.8641 | 0.8483 | 0.8453 |
108
- | 0.0008 | 8.0 | 2400 | 0.7871 | 0.8571 | 0.8752 | 0.8571 | 0.8535 |
109
- | 0.0033 | 8.3333 | 2500 | 0.9942 | 0.8258 | 0.8480 | 0.8258 | 0.8220 |
110
- | 0.0017 | 8.6667 | 2600 | 1.1084 | 0.8175 | 0.8562 | 0.8175 | 0.8187 |
111
- | 0.0672 | 9.0 | 2700 | 0.8912 | 0.8438 | 0.8734 | 0.8438 | 0.8445 |
112
- | 0.0227 | 9.3333 | 2800 | 1.1547 | 0.8113 | 0.8295 | 0.8113 | 0.8086 |
113
- | 0.0012 | 9.6667 | 2900 | 1.1734 | 0.8154 | 0.8369 | 0.8154 | 0.8129 |
114
- | 0.0011 | 10.0 | 3000 | 0.9762 | 0.8542 | 0.8800 | 0.8542 | 0.8558 |
115
- | 0.0006 | 10.3333 | 3100 | 1.0484 | 0.8433 | 0.8707 | 0.8433 | 0.8447 |
116
- | 0.0291 | 10.6667 | 3200 | 0.7566 | 0.8475 | 0.8606 | 0.8475 | 0.8473 |
117
- | 0.0381 | 11.0 | 3300 | 0.8845 | 0.8496 | 0.8736 | 0.8496 | 0.8499 |
118
- | 0.0004 | 11.3333 | 3400 | 0.5031 | 0.8767 | 0.8904 | 0.8767 | 0.8796 |
119
- | 0.0237 | 11.6667 | 3500 | 0.7363 | 0.8438 | 0.8639 | 0.8438 | 0.8497 |
120
- | 0.0091 | 12.0 | 3600 | 0.8048 | 0.84 | 0.8455 | 0.84 | 0.8418 |
121
- | 0.0161 | 12.3333 | 3700 | 0.8593 | 0.8333 | 0.8518 | 0.8333 | 0.8377 |
122
- | 0.0389 | 12.6667 | 3800 | 1.0442 | 0.8275 | 0.8661 | 0.8275 | 0.8350 |
123
- | 0.0003 | 13.0 | 3900 | 0.9752 | 0.8329 | 0.8535 | 0.8329 | 0.8382 |
124
- | 0.0003 | 13.3333 | 4000 | 0.8313 | 0.8521 | 0.8735 | 0.8521 | 0.8564 |
125
- | 0.0003 | 13.6667 | 4100 | 1.4003 | 0.7887 | 0.8193 | 0.7887 | 0.7881 |
126
- | 0.0007 | 14.0 | 4200 | 1.1201 | 0.8171 | 0.8392 | 0.8171 | 0.8205 |
127
- | 0.0002 | 14.3333 | 4300 | 1.0160 | 0.8413 | 0.8667 | 0.8413 | 0.8428 |
128
- | 0.0002 | 14.6667 | 4400 | 1.0599 | 0.8271 | 0.8464 | 0.8271 | 0.8282 |
129
- | 0.0002 | 15.0 | 4500 | 1.0467 | 0.8358 | 0.8645 | 0.8358 | 0.8385 |
130
- | 0.0002 | 15.3333 | 4600 | 0.9069 | 0.8421 | 0.8616 | 0.8421 | 0.8454 |
131
- | 0.0002 | 15.6667 | 4700 | 0.9158 | 0.845 | 0.8646 | 0.845 | 0.8483 |
132
- | 0.0002 | 16.0 | 4800 | 0.9191 | 0.8471 | 0.8670 | 0.8471 | 0.8504 |
133
- | 0.0001 | 16.3333 | 4900 | 0.9290 | 0.845 | 0.8647 | 0.845 | 0.8483 |
134
- | 0.0001 | 16.6667 | 5000 | 0.9366 | 0.8471 | 0.8663 | 0.8471 | 0.8502 |
135
- | 0.0001 | 17.0 | 5100 | 0.9468 | 0.8471 | 0.8663 | 0.8471 | 0.8502 |
136
- | 0.0001 | 17.3333 | 5200 | 0.9553 | 0.8475 | 0.8665 | 0.8475 | 0.8506 |
137
- | 0.0001 | 17.6667 | 5300 | 0.9640 | 0.8467 | 0.8666 | 0.8467 | 0.8498 |
138
- | 0.0001 | 18.0 | 5400 | 0.9722 | 0.8462 | 0.8662 | 0.8462 | 0.8494 |
139
- | 0.0001 | 18.3333 | 5500 | 0.9799 | 0.8462 | 0.8664 | 0.8462 | 0.8494 |
140
- | 0.0001 | 18.6667 | 5600 | 0.9872 | 0.8467 | 0.8667 | 0.8467 | 0.8498 |
141
- | 0.0001 | 19.0 | 5700 | 0.9936 | 0.8467 | 0.8667 | 0.8467 | 0.8498 |
142
- | 0.0001 | 19.3333 | 5800 | 0.9997 | 0.8467 | 0.8667 | 0.8467 | 0.8498 |
143
- | 0.0001 | 19.6667 | 5900 | 1.0062 | 0.8467 | 0.8667 | 0.8467 | 0.8498 |
144
- | 0.0001 | 20.0 | 6000 | 1.0122 | 0.8462 | 0.8663 | 0.8462 | 0.8493 |
145
- | 0.0001 | 20.3333 | 6100 | 1.0177 | 0.8462 | 0.8663 | 0.8462 | 0.8493 |
146
- | 0.0001 | 20.6667 | 6200 | 1.0232 | 0.8467 | 0.8667 | 0.8467 | 0.8498 |
147
- | 0.0001 | 21.0 | 6300 | 1.0291 | 0.8471 | 0.8672 | 0.8471 | 0.8502 |
148
- | 0.0001 | 21.3333 | 6400 | 1.0342 | 0.8475 | 0.8678 | 0.8475 | 0.8506 |
149
- | 0.0001 | 21.6667 | 6500 | 1.0392 | 0.8471 | 0.8675 | 0.8471 | 0.8502 |
150
- | 0.0001 | 22.0 | 6600 | 1.0442 | 0.8467 | 0.8674 | 0.8467 | 0.8499 |
151
- | 0.0001 | 22.3333 | 6700 | 1.0487 | 0.8467 | 0.8674 | 0.8467 | 0.8499 |
152
- | 0.0001 | 22.6667 | 6800 | 1.0533 | 0.8467 | 0.8674 | 0.8467 | 0.8499 |
153
- | 0.0001 | 23.0 | 6900 | 1.0578 | 0.8471 | 0.8677 | 0.8471 | 0.8503 |
154
- | 0.0001 | 23.3333 | 7000 | 1.0623 | 0.8471 | 0.8682 | 0.8471 | 0.8504 |
155
- | 0.0001 | 23.6667 | 7100 | 1.0661 | 0.8467 | 0.8680 | 0.8467 | 0.8500 |
156
- | 0.0001 | 24.0 | 7200 | 1.0701 | 0.8467 | 0.8680 | 0.8467 | 0.8500 |
157
- | 0.0001 | 24.3333 | 7300 | 1.0740 | 0.8467 | 0.8680 | 0.8467 | 0.8500 |
158
- | 0.0 | 24.6667 | 7400 | 1.0775 | 0.8467 | 0.8678 | 0.8467 | 0.8499 |
159
- | 0.0 | 25.0 | 7500 | 1.0810 | 0.8467 | 0.8678 | 0.8467 | 0.8499 |
160
- | 0.0 | 25.3333 | 7600 | 1.0841 | 0.8467 | 0.8676 | 0.8467 | 0.8499 |
161
- | 0.0 | 25.6667 | 7700 | 1.0872 | 0.8467 | 0.8678 | 0.8467 | 0.8499 |
162
- | 0.0 | 26.0 | 7800 | 1.0904 | 0.8467 | 0.8678 | 0.8467 | 0.8499 |
163
- | 0.0 | 26.3333 | 7900 | 1.0937 | 0.8467 | 0.8678 | 0.8467 | 0.8499 |
164
- | 0.0 | 26.6667 | 8000 | 1.0964 | 0.8467 | 0.8678 | 0.8467 | 0.8499 |
165
- | 0.0 | 27.0 | 8100 | 1.0986 | 0.8467 | 0.8678 | 0.8467 | 0.8499 |
166
- | 0.0 | 27.3333 | 8200 | 1.1008 | 0.8462 | 0.8675 | 0.8462 | 0.8496 |
167
- | 0.0 | 27.6667 | 8300 | 1.1030 | 0.8462 | 0.8675 | 0.8462 | 0.8496 |
168
- | 0.0 | 28.0 | 8400 | 1.1049 | 0.8462 | 0.8675 | 0.8462 | 0.8496 |
169
- | 0.0 | 28.3333 | 8500 | 1.1066 | 0.8462 | 0.8675 | 0.8462 | 0.8496 |
170
- | 0.0 | 28.6667 | 8600 | 1.1078 | 0.8462 | 0.8675 | 0.8462 | 0.8496 |
171
- | 0.0 | 29.0 | 8700 | 1.1090 | 0.8462 | 0.8675 | 0.8462 | 0.8496 |
172
- | 0.0 | 29.3333 | 8800 | 1.1098 | 0.8462 | 0.8675 | 0.8462 | 0.8496 |
173
- | 0.0 | 29.6667 | 8900 | 1.1103 | 0.8462 | 0.8675 | 0.8462 | 0.8496 |
174
- | 0.0 | 30.0 | 9000 | 1.1105 | 0.8462 | 0.8675 | 0.8462 | 0.8496 |
175
 
176
 
177
  ### Framework versions
 
26
  metrics:
27
  - name: Accuracy
28
  type: accuracy
29
+ value: 0.83375
30
  - name: Precision
31
  type: precision
32
+ value: 0.8588680878951838
33
  - name: Recall
34
  type: recall
35
+ value: 0.83375
36
  - name: F1
37
  type: f1
38
+ value: 0.8355968544321966
39
  ---
40
 
41
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
42
  should probably proofread and complete it, then remove this comment. -->
43
 
 
44
  # vit-base-kidney-stone-Michel_Daudon_-w256_1k_v1-_MIX
45
 
46
  This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset.
47
  It achieves the following results on the evaluation set:
48
+ - Loss: 0.4940
49
+ - Accuracy: 0.8337
50
+ - Precision: 0.8589
51
+ - Recall: 0.8337
52
+ - F1: 0.8356
53
 
54
  ## Model description
55
 
 
74
  - seed: 42
75
  - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
76
  - lr_scheduler_type: linear
77
+ - num_epochs: 15
78
  - mixed_precision_training: Native AMP
79
 
80
  ### Training results
81
 
82
  | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
83
  |:-------------:|:-------:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|
84
+ | 0.1919 | 0.3333 | 100 | 0.4940 | 0.8337 | 0.8589 | 0.8337 | 0.8356 |
85
+ | 0.1697 | 0.6667 | 200 | 0.6993 | 0.8092 | 0.8485 | 0.8092 | 0.8059 |
86
+ | 0.1514 | 1.0 | 300 | 0.5555 | 0.8442 | 0.8565 | 0.8442 | 0.8443 |
87
+ | 0.0991 | 1.3333 | 400 | 0.5918 | 0.8467 | 0.8741 | 0.8467 | 0.8453 |
88
+ | 0.0415 | 1.6667 | 500 | 0.6080 | 0.8558 | 0.8690 | 0.8558 | 0.8553 |
89
+ | 0.1112 | 2.0 | 600 | 0.9788 | 0.7983 | 0.8485 | 0.7983 | 0.8028 |
90
+ | 0.0658 | 2.3333 | 700 | 1.0272 | 0.8004 | 0.8310 | 0.8004 | 0.8002 |
91
+ | 0.0977 | 2.6667 | 800 | 0.6861 | 0.8479 | 0.8570 | 0.8479 | 0.8482 |
92
+ | 0.03 | 3.0 | 900 | 0.8317 | 0.8025 | 0.8225 | 0.8025 | 0.8048 |
93
+ | 0.0253 | 3.3333 | 1000 | 0.8574 | 0.8242 | 0.8408 | 0.8242 | 0.8254 |
94
+ | 0.0564 | 3.6667 | 1100 | 0.8591 | 0.8392 | 0.8513 | 0.8392 | 0.8343 |
95
+ | 0.0285 | 4.0 | 1200 | 1.3453 | 0.7512 | 0.8090 | 0.7512 | 0.7484 |
96
+ | 0.002 | 4.3333 | 1300 | 0.9746 | 0.8192 | 0.8381 | 0.8192 | 0.8227 |
97
+ | 0.0214 | 4.6667 | 1400 | 0.7404 | 0.8646 | 0.8641 | 0.8646 | 0.8572 |
98
+ | 0.0282 | 5.0 | 1500 | 1.0063 | 0.8233 | 0.8486 | 0.8233 | 0.8219 |
99
+ | 0.03 | 5.3333 | 1600 | 1.0066 | 0.8025 | 0.8376 | 0.8025 | 0.8058 |
100
+ | 0.028 | 5.6667 | 1700 | 1.1451 | 0.8108 | 0.8325 | 0.8108 | 0.8067 |
101
+ | 0.0078 | 6.0 | 1800 | 1.0700 | 0.805 | 0.8220 | 0.805 | 0.8045 |
102
+ | 0.0008 | 6.3333 | 1900 | 1.0180 | 0.8146 | 0.8303 | 0.8146 | 0.8165 |
103
+ | 0.0008 | 6.6667 | 2000 | 0.9882 | 0.8246 | 0.8401 | 0.8246 | 0.8236 |
104
+ | 0.0006 | 7.0 | 2100 | 1.0366 | 0.8283 | 0.8424 | 0.8283 | 0.8270 |
105
+ | 0.0009 | 7.3333 | 2200 | 1.1136 | 0.8121 | 0.8309 | 0.8121 | 0.8143 |
106
+ | 0.0068 | 7.6667 | 2300 | 1.0873 | 0.8117 | 0.8128 | 0.8117 | 0.8015 |
107
+ | 0.0006 | 8.0 | 2400 | 0.8601 | 0.8325 | 0.8383 | 0.8325 | 0.8292 |
108
+ | 0.0187 | 8.3333 | 2500 | 0.9700 | 0.8258 | 0.8375 | 0.8258 | 0.8241 |
109
+ | 0.0005 | 8.6667 | 2600 | 0.8825 | 0.8175 | 0.8339 | 0.8175 | 0.8199 |
110
+ | 0.0005 | 9.0 | 2700 | 1.0314 | 0.8242 | 0.8455 | 0.8242 | 0.8230 |
111
+ | 0.0004 | 9.3333 | 2800 | 1.0323 | 0.8233 | 0.8443 | 0.8233 | 0.8230 |
112
+ | 0.0003 | 9.6667 | 2900 | 1.0397 | 0.8229 | 0.8433 | 0.8229 | 0.8229 |
113
+ | 0.0003 | 10.0 | 3000 | 1.0473 | 0.8237 | 0.8437 | 0.8237 | 0.8239 |
114
+ | 0.0003 | 10.3333 | 3100 | 1.0536 | 0.8229 | 0.8428 | 0.8229 | 0.8233 |
115
+ | 0.0003 | 10.6667 | 3200 | 1.0605 | 0.8229 | 0.8429 | 0.8229 | 0.8234 |
116
+ | 0.0003 | 11.0 | 3300 | 1.0667 | 0.8229 | 0.8429 | 0.8229 | 0.8234 |
117
+ | 0.0002 | 11.3333 | 3400 | 1.0711 | 0.8237 | 0.8436 | 0.8237 | 0.8243 |
118
+ | 0.0002 | 11.6667 | 3500 | 1.0750 | 0.8246 | 0.8441 | 0.8246 | 0.8251 |
119
+ | 0.0002 | 12.0 | 3600 | 1.0804 | 0.825 | 0.8443 | 0.825 | 0.8257 |
120
+ | 0.0002 | 12.3333 | 3700 | 1.0839 | 0.825 | 0.8440 | 0.825 | 0.8257 |
121
+ | 0.0002 | 12.6667 | 3800 | 1.0875 | 0.8246 | 0.8436 | 0.8246 | 0.8253 |
122
+ | 0.0002 | 13.0 | 3900 | 1.0909 | 0.8246 | 0.8436 | 0.8246 | 0.8253 |
123
+ | 0.0002 | 13.3333 | 4000 | 1.0930 | 0.8246 | 0.8436 | 0.8246 | 0.8253 |
124
+ | 0.0002 | 13.6667 | 4100 | 1.0954 | 0.8237 | 0.8429 | 0.8237 | 0.8246 |
125
+ | 0.0002 | 14.0 | 4200 | 1.0975 | 0.8237 | 0.8429 | 0.8237 | 0.8246 |
126
+ | 0.0002 | 14.3333 | 4300 | 1.0988 | 0.8237 | 0.8429 | 0.8237 | 0.8246 |
127
+ | 0.0002 | 14.6667 | 4400 | 1.0997 | 0.8237 | 0.8429 | 0.8237 | 0.8246 |
128
+ | 0.0002 | 15.0 | 4500 | 1.1000 | 0.8237 | 0.8429 | 0.8237 | 0.8246 |
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
129
 
130
 
131
  ### Framework versions
all_results.json CHANGED
@@ -1,16 +1,16 @@
1
  {
2
- "epoch": 30.0,
3
- "eval_accuracy": 0.8870833333333333,
4
- "eval_f1": 0.8880432263296901,
5
- "eval_loss": 0.4892176389694214,
6
- "eval_precision": 0.8988360882885232,
7
- "eval_recall": 0.8870833333333333,
8
- "eval_runtime": 16.7314,
9
- "eval_samples_per_second": 143.443,
10
- "eval_steps_per_second": 17.93,
11
- "total_flos": 2.231849311469568e+19,
12
- "train_loss": 0.02316958835389879,
13
- "train_runtime": 4210.125,
14
- "train_samples_per_second": 68.407,
15
- "train_steps_per_second": 2.138
16
  }
 
1
  {
2
+ "epoch": 15.0,
3
+ "eval_accuracy": 0.83375,
4
+ "eval_f1": 0.8355968544321966,
5
+ "eval_loss": 0.49404826760292053,
6
+ "eval_precision": 0.8588680878951838,
7
+ "eval_recall": 0.83375,
8
+ "eval_runtime": 16.6108,
9
+ "eval_samples_per_second": 144.484,
10
+ "eval_steps_per_second": 18.061,
11
+ "total_flos": 1.115924655734784e+19,
12
+ "train_loss": 0.036104821799529924,
13
+ "train_runtime": 1974.1364,
14
+ "train_samples_per_second": 72.943,
15
+ "train_steps_per_second": 2.279
16
  }
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:14787cb320225db08f3922079550b8f4c3f0d732808d55ba33a5f6070bc03b1f
3
  size 343236280
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:816c0329c7df3ff4c5d3934af2b89aee05a3250e99db1a4a0a9e62b4d4def868
3
  size 343236280
test_results.json CHANGED
@@ -1,11 +1,11 @@
1
  {
2
- "epoch": 30.0,
3
- "eval_accuracy": 0.8870833333333333,
4
- "eval_f1": 0.8880432263296901,
5
- "eval_loss": 0.4892176389694214,
6
- "eval_precision": 0.8988360882885232,
7
- "eval_recall": 0.8870833333333333,
8
- "eval_runtime": 16.7314,
9
- "eval_samples_per_second": 143.443,
10
- "eval_steps_per_second": 17.93
11
  }
 
1
  {
2
+ "epoch": 15.0,
3
+ "eval_accuracy": 0.83375,
4
+ "eval_f1": 0.8355968544321966,
5
+ "eval_loss": 0.49404826760292053,
6
+ "eval_precision": 0.8588680878951838,
7
+ "eval_recall": 0.83375,
8
+ "eval_runtime": 16.6108,
9
+ "eval_samples_per_second": 144.484,
10
+ "eval_steps_per_second": 18.061
11
  }
train_results.json CHANGED
@@ -1,8 +1,8 @@
1
  {
2
- "epoch": 30.0,
3
- "total_flos": 2.231849311469568e+19,
4
- "train_loss": 0.02316958835389879,
5
- "train_runtime": 4210.125,
6
- "train_samples_per_second": 68.407,
7
- "train_steps_per_second": 2.138
8
  }
 
1
  {
2
+ "epoch": 15.0,
3
+ "total_flos": 1.115924655734784e+19,
4
+ "train_loss": 0.036104821799529924,
5
+ "train_runtime": 1974.1364,
6
+ "train_samples_per_second": 72.943,
7
+ "train_steps_per_second": 2.279
8
  }
trainer_state.json CHANGED
The diff for this file is too large to render. See raw diff
 
training_args.bin CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:e9ef7f4301a5277e8272768aba19b936a805d557b2e0d7ac135aee1609e4ce27
3
  size 5432
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:35779c4b14f476d1d8998bcefdf259f30b0bf91189e06a1e7fdd4b9eb4b2b619
3
  size 5432