Kosuke-Szk
commited on
Commit
β’
d584376
1
Parent(s):
cbdb625
Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,55 @@
|
|
1 |
---
|
2 |
license: apache-2.0
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
license: apache-2.0
|
3 |
+
datasets:
|
4 |
+
- common_voice
|
5 |
+
language:
|
6 |
+
- ja
|
7 |
+
tags:
|
8 |
+
- audio
|
9 |
---
|
10 |
+
|
11 |
+
# Fine-tuned Japanese Whisper model for speech recognition using whisper-base
|
12 |
+
Fine-tuned [openai/whisper-base](https://huggingface.co/openai/whisper-base) on Japanese using [Common Voice](https://commonvoice.mozilla.org/ja/datasets), [JVS](https://sites.google.com/site/shinnosuketakamichi/research-topics/jvs_corpus) and [JSUT](https://sites.google.com/site/shinnosuketakamichi/publication/jsut).
|
13 |
+
When using this model, make sure that your speech input is sampled at 16kHz.
|
14 |
+
|
15 |
+
## Usage
|
16 |
+
The model can be used directly as follows.
|
17 |
+
```python
|
18 |
+
from transformers import WhisperForConditionalGeneration, WhisperProcessor
|
19 |
+
from datasets import load_dataset
|
20 |
+
import librosa
|
21 |
+
import torch
|
22 |
+
|
23 |
+
LANG_ID = "ja"
|
24 |
+
MODEL_ID = "Ivydata/whisper-base-japanese"
|
25 |
+
SAMPLES = 10
|
26 |
+
|
27 |
+
test_dataset = load_dataset("common_voice", LANG_ID, split=f"test[:{SAMPLES}]")
|
28 |
+
processor = WhisperProcessor.from_pretrained("openai/whisper-base")
|
29 |
+
model = WhisperForConditionalGeneration.from_pretrained(MODEL_ID)
|
30 |
+
model.config.forced_decoder_ids = processor.get_decoder_prompt_ids(
|
31 |
+
language="ja", task="transcribe"
|
32 |
+
)
|
33 |
+
model.config.suppress_tokens = []
|
34 |
+
|
35 |
+
# Preprocessing the datasets.
|
36 |
+
# We need to read the audio files as arrays
|
37 |
+
def speech_file_to_array_fn(batch):
|
38 |
+
speech_array, sampling_rate = librosa.load(batch["path"], sr=16_000)
|
39 |
+
batch["speech"] = speech_array
|
40 |
+
batch["sentence"] = batch["sentence"].upper()
|
41 |
+
batch["sampling_rate"] = sampling_rate
|
42 |
+
return batch
|
43 |
+
|
44 |
+
test_dataset = test_dataset.map(speech_file_to_array_fn)
|
45 |
+
sample = test_dataset[0]
|
46 |
+
input_features = processor(sample["speech"], sampling_rate=sample["sampling_rate"], return_tensors="pt").input_features
|
47 |
+
predicted_ids = model.generate(input_features)
|
48 |
+
|
49 |
+
transcription = processor.batch_decode(predicted_ids, skip_special_tokens=False)
|
50 |
+
# ['<|startoftranscript|><|ja|><|transcribe|><|notimestamps|>ζ¨ζγγγ«ι»θ©±γθ²Έγγ¦γγγγΎγγγ<|endoftext|>']
|
51 |
+
|
52 |
+
transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True)
|
53 |
+
# ['ζ¨ζγγγ«ι»θ©±γθ²Έγγ¦γγγγΎγγγ']
|
54 |
+
|
55 |
+
```
|