|
optim = AdamW(model.parameters(), lr=5e-5) #tasa de aprendizaje |
|
|
|
# Se inicializa el cargador de datos para los datos de entrenamiento |
|
train_loader = DataLoader(train_dataset, batch_size=8, shuffle=True) |
|
|
|
for epoch in range(3): |
|
|
|
Epoch 0: 100%|鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅| 94/94 [00:58<00:00, 1.61it/s, loss=1.8] |
|
Epoch 1: 100%|鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅| 94/94 [00:58<00:00, 1.61it/s, loss=0.476] |
|
Epoch 2: 100%|鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅| 94/94 [00:58<00:00, 1.61it/s, loss=0.133] |
|
Epoch 3: 100%|鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅| 94/94 [00:58<00:00, 1.61it/s, loss=0.0961] |
|
Epoch 4: 100%|鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅| 94/94 [00:58<00:00, 1.61it/s, loss=0.115] |
|
Epoch 5: 100%|鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅| 94/94 [00:58<00:00, 1.61it/s, loss=0.131] |
|
Epoch 6: 100%|鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅| 94/94 [00:58<00:00, 1.61it/s, loss=0.111] |
|
Epoch 7: 100%|鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅| 94/94 [00:58<00:00, 1.61it/s, loss=0.0191] |
|
Epoch 8: 100%|鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅| 94/94 [00:58<00:00, 1.61it/s, loss=0.00245]] |
|
|
|
Precisi贸n del modelo ajustado: |
|
|