JIWON commited on
Commit
a67fa4d
·
1 Parent(s): d1b01a2

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +75 -0
README.md ADDED
@@ -0,0 +1,75 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - generated_from_trainer
4
+ datasets:
5
+ - klue
6
+ metrics:
7
+ - accuracy
8
+ model-index:
9
+ - name: bert-base-finetuned-nli
10
+ results:
11
+ - task:
12
+ name: Text Classification
13
+ type: text-classification
14
+ dataset:
15
+ name: klue
16
+ type: klue
17
+ args: nli
18
+ metrics:
19
+ - name: Accuracy
20
+ type: accuracy
21
+ value: 0.085
22
+ ---
23
+
24
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
25
+ should probably proofread and complete it, then remove this comment. -->
26
+
27
+ # bert-base-finetuned-nli
28
+
29
+ This model is a fine-tuned version of [klue/bert-base](https://huggingface.co/klue/bert-base) on the klue dataset.
30
+ It achieves the following results on the evaluation set:
31
+ - Loss: 0.6210
32
+ - Accuracy: 0.085
33
+
34
+ ## Model description
35
+
36
+ More information needed
37
+
38
+ ## Intended uses & limitations
39
+
40
+ More information needed
41
+
42
+ ## Training and evaluation data
43
+
44
+ More information needed
45
+
46
+ ## Training procedure
47
+
48
+ ### Training hyperparameters
49
+
50
+ The following hyperparameters were used during training:
51
+ - learning_rate: 2e-05
52
+ - train_batch_size: 128
53
+ - eval_batch_size: 128
54
+ - seed: 42
55
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
56
+ - lr_scheduler_type: linear
57
+ - num_epochs: 5
58
+
59
+ ### Training results
60
+
61
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy |
62
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|
63
+ | No log | 1.0 | 196 | 0.6210 | 0.085 |
64
+ | No log | 2.0 | 392 | 0.5421 | 0.0643 |
65
+ | 0.5048 | 3.0 | 588 | 0.5523 | 0.062 |
66
+ | 0.5048 | 4.0 | 784 | 0.5769 | 0.0533 |
67
+ | 0.5048 | 5.0 | 980 | 0.5959 | 0.052 |
68
+
69
+
70
+ ### Framework versions
71
+
72
+ - Transformers 4.16.2
73
+ - Pytorch 1.10.0+cu111
74
+ - Datasets 1.18.3
75
+ - Tokenizers 0.11.0