Upload folder using huggingface_hub
Browse files- README.md +145 -3
- config.json +173 -0
- merges.txt +0 -0
- model.safetensors +3 -0
- modeling_MMRet_CLIP.py +1678 -0
- preprocessor_config.json +19 -0
- special_tokens_map.json +1 -0
- tokenizer.json +0 -0
- tokenizer_config.json +34 -0
- vocab.json +0 -0
README.md
CHANGED
@@ -1,3 +1,145 @@
|
|
1 |
-
---
|
2 |
-
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
tags:
|
3 |
+
- vision
|
4 |
+
widget:
|
5 |
+
- src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/cat-dog-music.png
|
6 |
+
candidate_labels: playing music, playing sports
|
7 |
+
example_title: Cat & Dog
|
8 |
+
---
|
9 |
+
|
10 |
+
# Model Card: CLIP
|
11 |
+
|
12 |
+
Disclaimer: The model card is taken and modified from the official CLIP repository, it can be found [here](https://github.com/openai/CLIP/blob/main/model-card.md).
|
13 |
+
|
14 |
+
## Model Details
|
15 |
+
|
16 |
+
The CLIP model was developed by researchers at OpenAI to learn about what contributes to robustness in computer vision tasks. The model was also developed to test the ability of models to generalize to arbitrary image classification tasks in a zero-shot manner. It was not developed for general model deployment - to deploy models like CLIP, researchers will first need to carefully study their capabilities in relation to the specific context they’re being deployed within.
|
17 |
+
|
18 |
+
### Model Date
|
19 |
+
|
20 |
+
January 2021
|
21 |
+
|
22 |
+
### Model Type
|
23 |
+
|
24 |
+
The base model uses a ViT-L/14 Transformer architecture as an image encoder and uses a masked self-attention Transformer as a text encoder. These encoders are trained to maximize the similarity of (image, text) pairs via a contrastive loss.
|
25 |
+
|
26 |
+
The original implementation had two variants: one using a ResNet image encoder and the other using a Vision Transformer. This repository has the variant with the Vision Transformer.
|
27 |
+
|
28 |
+
|
29 |
+
### Documents
|
30 |
+
|
31 |
+
- [Blog Post](https://openai.com/blog/clip/)
|
32 |
+
- [CLIP Paper](https://arxiv.org/abs/2103.00020)
|
33 |
+
|
34 |
+
|
35 |
+
### Use with Transformers
|
36 |
+
|
37 |
+
```python
|
38 |
+
from PIL import Image
|
39 |
+
import requests
|
40 |
+
|
41 |
+
from transformers import CLIPProcessor, CLIPModel
|
42 |
+
|
43 |
+
model = CLIPModel.from_pretrained("openai/clip-vit-large-patch14")
|
44 |
+
processor = CLIPProcessor.from_pretrained("openai/clip-vit-large-patch14")
|
45 |
+
|
46 |
+
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
47 |
+
image = Image.open(requests.get(url, stream=True).raw)
|
48 |
+
|
49 |
+
inputs = processor(text=["a photo of a cat", "a photo of a dog"], images=image, return_tensors="pt", padding=True)
|
50 |
+
|
51 |
+
outputs = model(**inputs)
|
52 |
+
logits_per_image = outputs.logits_per_image # this is the image-text similarity score
|
53 |
+
probs = logits_per_image.softmax(dim=1) # we can take the softmax to get the label probabilities
|
54 |
+
```
|
55 |
+
|
56 |
+
|
57 |
+
## Model Use
|
58 |
+
|
59 |
+
### Intended Use
|
60 |
+
|
61 |
+
The model is intended as a research output for research communities. We hope that this model will enable researchers to better understand and explore zero-shot, arbitrary image classification. We also hope it can be used for interdisciplinary studies of the potential impact of such models - the CLIP paper includes a discussion of potential downstream impacts to provide an example for this sort of analysis.
|
62 |
+
|
63 |
+
#### Primary intended uses
|
64 |
+
|
65 |
+
The primary intended users of these models are AI researchers.
|
66 |
+
|
67 |
+
We primarily imagine the model will be used by researchers to better understand robustness, generalization, and other capabilities, biases, and constraints of computer vision models.
|
68 |
+
|
69 |
+
### Out-of-Scope Use Cases
|
70 |
+
|
71 |
+
**Any** deployed use case of the model - whether commercial or not - is currently out of scope. Non-deployed use cases such as image search in a constrained environment, are also not recommended unless there is thorough in-domain testing of the model with a specific, fixed class taxonomy. This is because our safety assessment demonstrated a high need for task specific testing especially given the variability of CLIP’s performance with different class taxonomies. This makes untested and unconstrained deployment of the model in any use case currently potentially harmful.
|
72 |
+
|
73 |
+
Certain use cases which would fall under the domain of surveillance and facial recognition are always out-of-scope regardless of performance of the model. This is because the use of artificial intelligence for tasks such as these can be premature currently given the lack of testing norms and checks to ensure its fair use.
|
74 |
+
|
75 |
+
Since the model has not been purposefully trained in or evaluated on any languages other than English, its use should be limited to English language use cases.
|
76 |
+
|
77 |
+
|
78 |
+
|
79 |
+
## Data
|
80 |
+
|
81 |
+
The model was trained on publicly available image-caption data. This was done through a combination of crawling a handful of websites and using commonly-used pre-existing image datasets such as [YFCC100M](http://projects.dfki.uni-kl.de/yfcc100m/). A large portion of the data comes from our crawling of the internet. This means that the data is more representative of people and societies most connected to the internet which tend to skew towards more developed nations, and younger, male users.
|
82 |
+
|
83 |
+
### Data Mission Statement
|
84 |
+
|
85 |
+
Our goal with building this dataset was to test out robustness and generalizability in computer vision tasks. As a result, the focus was on gathering large quantities of data from different publicly-available internet data sources. The data was gathered in a mostly non-interventionist manner. However, we only crawled websites that had policies against excessively violent and adult images and allowed us to filter out such content. We do not intend for this dataset to be used as the basis for any commercial or deployed model and will not be releasing the dataset.
|
86 |
+
|
87 |
+
|
88 |
+
|
89 |
+
## Performance and Limitations
|
90 |
+
|
91 |
+
### Performance
|
92 |
+
|
93 |
+
We have evaluated the performance of CLIP on a wide range of benchmarks across a variety of computer vision datasets such as OCR to texture recognition to fine-grained classification. The paper describes model performance on the following datasets:
|
94 |
+
|
95 |
+
- Food101
|
96 |
+
- CIFAR10
|
97 |
+
- CIFAR100
|
98 |
+
- Birdsnap
|
99 |
+
- SUN397
|
100 |
+
- Stanford Cars
|
101 |
+
- FGVC Aircraft
|
102 |
+
- VOC2007
|
103 |
+
- DTD
|
104 |
+
- Oxford-IIIT Pet dataset
|
105 |
+
- Caltech101
|
106 |
+
- Flowers102
|
107 |
+
- MNIST
|
108 |
+
- SVHN
|
109 |
+
- IIIT5K
|
110 |
+
- Hateful Memes
|
111 |
+
- SST-2
|
112 |
+
- UCF101
|
113 |
+
- Kinetics700
|
114 |
+
- Country211
|
115 |
+
- CLEVR Counting
|
116 |
+
- KITTI Distance
|
117 |
+
- STL-10
|
118 |
+
- RareAct
|
119 |
+
- Flickr30
|
120 |
+
- MSCOCO
|
121 |
+
- ImageNet
|
122 |
+
- ImageNet-A
|
123 |
+
- ImageNet-R
|
124 |
+
- ImageNet Sketch
|
125 |
+
- ObjectNet (ImageNet Overlap)
|
126 |
+
- Youtube-BB
|
127 |
+
- ImageNet-Vid
|
128 |
+
|
129 |
+
## Limitations
|
130 |
+
|
131 |
+
CLIP and our analysis of it have a number of limitations. CLIP currently struggles with respect to certain tasks such as fine grained classification and counting objects. CLIP also poses issues with regards to fairness and bias which we discuss in the paper and briefly in the next section. Additionally, our approach to testing CLIP also has an important limitation- in many cases we have used linear probes to evaluate the performance of CLIP and there is evidence suggesting that linear probes can underestimate model performance.
|
132 |
+
|
133 |
+
### Bias and Fairness
|
134 |
+
|
135 |
+
We find that the performance of CLIP - and the specific biases it exhibits - can depend significantly on class design and the choices one makes for categories to include and exclude. We tested the risk of certain kinds of denigration with CLIP by classifying images of people from [Fairface](https://arxiv.org/abs/1908.04913) into crime-related and non-human animal categories. We found significant disparities with respect to race and gender. Additionally, we found that these disparities could shift based on how the classes were constructed. (Details captured in the Broader Impacts Section in the paper).
|
136 |
+
|
137 |
+
We also tested the performance of CLIP on gender, race and age classification using the Fairface dataset (We default to using race categories as they are constructed in the Fairface dataset.) in order to assess quality of performance across different demographics. We found accuracy >96% across all races for gender classification with ‘Middle Eastern’ having the highest accuracy (98.4%) and ‘White’ having the lowest (96.5%). Additionally, CLIP averaged ~93% for racial classification and ~63% for age classification. Our use of evaluations to test for gender, race and age classification as well as denigration harms is simply to evaluate performance of the model across people and surface potential risks and not to demonstrate an endorsement/enthusiasm for such tasks.
|
138 |
+
|
139 |
+
|
140 |
+
|
141 |
+
## Feedback
|
142 |
+
|
143 |
+
### Where to send questions or comments about the model
|
144 |
+
|
145 |
+
Please use [this Google Form](https://forms.gle/Uv7afRH5dvY34ZEs9)
|
config.json
ADDED
@@ -0,0 +1,173 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"CLIPModel"
|
4 |
+
],
|
5 |
+
"initializer_factor": 1.0,
|
6 |
+
"logit_scale_init_value": 2.6592,
|
7 |
+
"model_type": "clip",
|
8 |
+
"projection_dim": 768,
|
9 |
+
"auto_map": {
|
10 |
+
"AutoModel": "modeling_MMRet_CLIP.CLIPModel"
|
11 |
+
},
|
12 |
+
"text_config": {
|
13 |
+
"_name_or_path": "",
|
14 |
+
"add_cross_attention": false,
|
15 |
+
"architectures": null,
|
16 |
+
"attention_dropout": 0.0,
|
17 |
+
"bad_words_ids": null,
|
18 |
+
"bos_token_id": 0,
|
19 |
+
"chunk_size_feed_forward": 0,
|
20 |
+
"cross_attention_hidden_size": null,
|
21 |
+
"decoder_start_token_id": null,
|
22 |
+
"diversity_penalty": 0.0,
|
23 |
+
"do_sample": false,
|
24 |
+
"dropout": 0.0,
|
25 |
+
"early_stopping": false,
|
26 |
+
"encoder_no_repeat_ngram_size": 0,
|
27 |
+
"eos_token_id": 2,
|
28 |
+
"finetuning_task": null,
|
29 |
+
"forced_bos_token_id": null,
|
30 |
+
"forced_eos_token_id": null,
|
31 |
+
"hidden_act": "quick_gelu",
|
32 |
+
"hidden_size": 768,
|
33 |
+
"id2label": {
|
34 |
+
"0": "LABEL_0",
|
35 |
+
"1": "LABEL_1"
|
36 |
+
},
|
37 |
+
"initializer_factor": 1.0,
|
38 |
+
"initializer_range": 0.02,
|
39 |
+
"intermediate_size": 3072,
|
40 |
+
"is_decoder": false,
|
41 |
+
"is_encoder_decoder": false,
|
42 |
+
"label2id": {
|
43 |
+
"LABEL_0": 0,
|
44 |
+
"LABEL_1": 1
|
45 |
+
},
|
46 |
+
"layer_norm_eps": 1e-05,
|
47 |
+
"length_penalty": 1.0,
|
48 |
+
"max_length": 20,
|
49 |
+
"max_position_embeddings": 77,
|
50 |
+
"min_length": 0,
|
51 |
+
"model_type": "clip_text_model",
|
52 |
+
"no_repeat_ngram_size": 0,
|
53 |
+
"num_attention_heads": 12,
|
54 |
+
"num_beam_groups": 1,
|
55 |
+
"num_beams": 1,
|
56 |
+
"num_hidden_layers": 12,
|
57 |
+
"num_return_sequences": 1,
|
58 |
+
"output_attentions": false,
|
59 |
+
"output_hidden_states": false,
|
60 |
+
"output_scores": false,
|
61 |
+
"pad_token_id": 1,
|
62 |
+
"prefix": null,
|
63 |
+
"problem_type": null,
|
64 |
+
"projection_dim" : 768,
|
65 |
+
"pruned_heads": {},
|
66 |
+
"remove_invalid_values": false,
|
67 |
+
"repetition_penalty": 1.0,
|
68 |
+
"return_dict": true,
|
69 |
+
"return_dict_in_generate": false,
|
70 |
+
"sep_token_id": null,
|
71 |
+
"task_specific_params": null,
|
72 |
+
"temperature": 1.0,
|
73 |
+
"tie_encoder_decoder": false,
|
74 |
+
"tie_word_embeddings": true,
|
75 |
+
"tokenizer_class": null,
|
76 |
+
"top_k": 50,
|
77 |
+
"top_p": 1.0,
|
78 |
+
"torch_dtype": null,
|
79 |
+
"torchscript": false,
|
80 |
+
"transformers_version": "4.16.0.dev0",
|
81 |
+
"use_bfloat16": false,
|
82 |
+
"vocab_size": 49408
|
83 |
+
},
|
84 |
+
"text_config_dict": {
|
85 |
+
"hidden_size": 768,
|
86 |
+
"intermediate_size": 3072,
|
87 |
+
"num_attention_heads": 12,
|
88 |
+
"num_hidden_layers": 12,
|
89 |
+
"projection_dim": 768
|
90 |
+
},
|
91 |
+
"torch_dtype": "bfloat16",
|
92 |
+
"transformers_version": null,
|
93 |
+
"vision_config": {
|
94 |
+
"_name_or_path": "",
|
95 |
+
"add_cross_attention": false,
|
96 |
+
"architectures": null,
|
97 |
+
"attention_dropout": 0.0,
|
98 |
+
"bad_words_ids": null,
|
99 |
+
"bos_token_id": null,
|
100 |
+
"chunk_size_feed_forward": 0,
|
101 |
+
"cross_attention_hidden_size": null,
|
102 |
+
"decoder_start_token_id": null,
|
103 |
+
"diversity_penalty": 0.0,
|
104 |
+
"do_sample": false,
|
105 |
+
"dropout": 0.0,
|
106 |
+
"early_stopping": false,
|
107 |
+
"encoder_no_repeat_ngram_size": 0,
|
108 |
+
"eos_token_id": null,
|
109 |
+
"finetuning_task": null,
|
110 |
+
"forced_bos_token_id": null,
|
111 |
+
"forced_eos_token_id": null,
|
112 |
+
"hidden_act": "quick_gelu",
|
113 |
+
"hidden_size": 1024,
|
114 |
+
"id2label": {
|
115 |
+
"0": "LABEL_0",
|
116 |
+
"1": "LABEL_1"
|
117 |
+
},
|
118 |
+
"image_size": 224,
|
119 |
+
"initializer_factor": 1.0,
|
120 |
+
"initializer_range": 0.02,
|
121 |
+
"intermediate_size": 4096,
|
122 |
+
"is_decoder": false,
|
123 |
+
"is_encoder_decoder": false,
|
124 |
+
"label2id": {
|
125 |
+
"LABEL_0": 0,
|
126 |
+
"LABEL_1": 1
|
127 |
+
},
|
128 |
+
"layer_norm_eps": 1e-05,
|
129 |
+
"length_penalty": 1.0,
|
130 |
+
"max_length": 20,
|
131 |
+
"min_length": 0,
|
132 |
+
"model_type": "clip_vision_model",
|
133 |
+
"no_repeat_ngram_size": 0,
|
134 |
+
"num_attention_heads": 16,
|
135 |
+
"num_beam_groups": 1,
|
136 |
+
"num_beams": 1,
|
137 |
+
"num_hidden_layers": 24,
|
138 |
+
"num_return_sequences": 1,
|
139 |
+
"output_attentions": false,
|
140 |
+
"output_hidden_states": false,
|
141 |
+
"output_scores": false,
|
142 |
+
"pad_token_id": null,
|
143 |
+
"patch_size": 14,
|
144 |
+
"prefix": null,
|
145 |
+
"problem_type": null,
|
146 |
+
"projection_dim" : 768,
|
147 |
+
"pruned_heads": {},
|
148 |
+
"remove_invalid_values": false,
|
149 |
+
"repetition_penalty": 1.0,
|
150 |
+
"return_dict": true,
|
151 |
+
"return_dict_in_generate": false,
|
152 |
+
"sep_token_id": null,
|
153 |
+
"task_specific_params": null,
|
154 |
+
"temperature": 1.0,
|
155 |
+
"tie_encoder_decoder": false,
|
156 |
+
"tie_word_embeddings": true,
|
157 |
+
"tokenizer_class": null,
|
158 |
+
"top_k": 50,
|
159 |
+
"top_p": 1.0,
|
160 |
+
"torch_dtype": null,
|
161 |
+
"torchscript": false,
|
162 |
+
"transformers_version": "4.16.0.dev0",
|
163 |
+
"use_bfloat16": false
|
164 |
+
},
|
165 |
+
"vision_config_dict": {
|
166 |
+
"hidden_size": 1024,
|
167 |
+
"intermediate_size": 4096,
|
168 |
+
"num_attention_heads": 16,
|
169 |
+
"num_hidden_layers": 24,
|
170 |
+
"patch_size": 14,
|
171 |
+
"projection_dim": 768
|
172 |
+
}
|
173 |
+
}
|
merges.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6d6c5dcd259b71a49a51916e5fd1dc248563ce08b41a713eb00dd296dfd8f5f4
|
3 |
+
size 855304818
|
modeling_MMRet_CLIP.py
ADDED
@@ -0,0 +1,1678 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2021 The OpenAI Team Authors and The HuggingFace Team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""PyTorch CLIP model."""
|
16 |
+
|
17 |
+
from dataclasses import dataclass
|
18 |
+
from typing import Any, Optional, Tuple, Union
|
19 |
+
|
20 |
+
import torch
|
21 |
+
import torch.utils.checkpoint
|
22 |
+
from torch import nn
|
23 |
+
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
24 |
+
from PIL import Image
|
25 |
+
from transformers.activations import ACT2FN
|
26 |
+
from transformers.modeling_attn_mask_utils import _create_4d_causal_attention_mask, _prepare_4d_attention_mask
|
27 |
+
from transformers.modeling_outputs import BaseModelOutput, BaseModelOutputWithPooling, ImageClassifierOutput
|
28 |
+
from transformers.modeling_utils import PreTrainedModel
|
29 |
+
from transformers.pytorch_utils import is_torch_greater_or_equal_than_2_2
|
30 |
+
from transformers.utils import (
|
31 |
+
ModelOutput,
|
32 |
+
add_code_sample_docstrings,
|
33 |
+
add_start_docstrings,
|
34 |
+
add_start_docstrings_to_model_forward,
|
35 |
+
is_flash_attn_2_available,
|
36 |
+
is_flash_attn_greater_or_equal_2_10,
|
37 |
+
logging,
|
38 |
+
replace_return_docstrings,
|
39 |
+
)
|
40 |
+
from transformers.models.clip.configuration_clip import CLIPConfig, CLIPTextConfig, CLIPVisionConfig
|
41 |
+
from transformers import CLIPProcessor
|
42 |
+
|
43 |
+
if is_flash_attn_2_available():
|
44 |
+
from transformers.modeling_flash_attention_utils import _flash_attention_forward
|
45 |
+
|
46 |
+
|
47 |
+
logger = logging.get_logger(__name__)
|
48 |
+
|
49 |
+
# General docstring
|
50 |
+
_CONFIG_FOR_DOC = "MMRet_CLIP"
|
51 |
+
|
52 |
+
# Image classification docstring
|
53 |
+
_IMAGE_CLASS_CHECKPOINT = "JUNJIE99/MMRet-large"
|
54 |
+
_IMAGE_CLASS_EXPECTED_OUTPUT = "LABEL_0"
|
55 |
+
|
56 |
+
|
57 |
+
# contrastive loss function, adapted from
|
58 |
+
# https://sachinruk.github.io/blog/2021-03-07-clip.html
|
59 |
+
def contrastive_loss(logits: torch.Tensor) -> torch.Tensor:
|
60 |
+
return nn.functional.cross_entropy(logits, torch.arange(len(logits), device=logits.device))
|
61 |
+
|
62 |
+
|
63 |
+
def clip_loss(similarity: torch.Tensor) -> torch.Tensor:
|
64 |
+
caption_loss = contrastive_loss(similarity)
|
65 |
+
image_loss = contrastive_loss(similarity.t())
|
66 |
+
return (caption_loss + image_loss) / 2.0
|
67 |
+
|
68 |
+
|
69 |
+
def _get_vector_norm(tensor: torch.Tensor) -> torch.Tensor:
|
70 |
+
"""
|
71 |
+
This method is equivalent to tensor.norm(p=2, dim=-1, keepdim=True) and used to make
|
72 |
+
model `executorch` exportable. See issue https://github.com/pytorch/executorch/issues/3566
|
73 |
+
"""
|
74 |
+
square_tensor = torch.pow(tensor, 2)
|
75 |
+
sum_tensor = torch.sum(square_tensor, dim=-1, keepdim=True)
|
76 |
+
normed_tensor = torch.pow(sum_tensor, 0.5)
|
77 |
+
return normed_tensor
|
78 |
+
|
79 |
+
|
80 |
+
@dataclass
|
81 |
+
class CLIPVisionModelOutput(ModelOutput):
|
82 |
+
"""
|
83 |
+
Base class for vision model's outputs that also contains image embeddings of the pooling of the last hidden states.
|
84 |
+
|
85 |
+
Args:
|
86 |
+
image_embeds (`torch.FloatTensor` of shape `(batch_size, output_dim)` *optional* returned when model is initialized with `with_projection=True`):
|
87 |
+
The image embeddings obtained by applying the projection layer to the pooler_output.
|
88 |
+
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
|
89 |
+
Sequence of hidden-states at the output of the last layer of the model.
|
90 |
+
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
91 |
+
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
|
92 |
+
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
|
93 |
+
|
94 |
+
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
|
95 |
+
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
|
96 |
+
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
|
97 |
+
sequence_length)`.
|
98 |
+
|
99 |
+
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
|
100 |
+
heads.
|
101 |
+
"""
|
102 |
+
|
103 |
+
image_embeds: Optional[torch.FloatTensor] = None
|
104 |
+
last_hidden_state: torch.FloatTensor = None
|
105 |
+
hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
|
106 |
+
attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
|
107 |
+
|
108 |
+
|
109 |
+
@dataclass
|
110 |
+
class CLIPTextModelOutput(ModelOutput):
|
111 |
+
"""
|
112 |
+
Base class for text model's outputs that also contains a pooling of the last hidden states.
|
113 |
+
|
114 |
+
Args:
|
115 |
+
text_embeds (`torch.FloatTensor` of shape `(batch_size, output_dim)` *optional* returned when model is initialized with `with_projection=True`):
|
116 |
+
The text embeddings obtained by applying the projection layer to the pooler_output.
|
117 |
+
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
|
118 |
+
Sequence of hidden-states at the output of the last layer of the model.
|
119 |
+
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
120 |
+
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
|
121 |
+
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
|
122 |
+
|
123 |
+
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
|
124 |
+
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
|
125 |
+
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
|
126 |
+
sequence_length)`.
|
127 |
+
|
128 |
+
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
|
129 |
+
heads.
|
130 |
+
"""
|
131 |
+
|
132 |
+
text_embeds: Optional[torch.FloatTensor] = None
|
133 |
+
last_hidden_state: torch.FloatTensor = None
|
134 |
+
hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
|
135 |
+
attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
|
136 |
+
|
137 |
+
|
138 |
+
@dataclass
|
139 |
+
class CLIPOutput(ModelOutput):
|
140 |
+
"""
|
141 |
+
Args:
|
142 |
+
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `return_loss` is `True`):
|
143 |
+
Contrastive loss for image-text similarity.
|
144 |
+
logits_per_image (`torch.FloatTensor` of shape `(image_batch_size, text_batch_size)`):
|
145 |
+
The scaled dot product scores between `image_embeds` and `text_embeds`. This represents the image-text
|
146 |
+
similarity scores.
|
147 |
+
logits_per_text (`torch.FloatTensor` of shape `(text_batch_size, image_batch_size)`):
|
148 |
+
The scaled dot product scores between `text_embeds` and `image_embeds`. This represents the text-image
|
149 |
+
similarity scores.
|
150 |
+
text_embeds (`torch.FloatTensor` of shape `(batch_size, output_dim`):
|
151 |
+
The text embeddings obtained by applying the projection layer to the pooled output of [`CLIPTextModel`].
|
152 |
+
image_embeds (`torch.FloatTensor` of shape `(batch_size, output_dim`):
|
153 |
+
The image embeddings obtained by applying the projection layer to the pooled output of [`CLIPVisionModel`].
|
154 |
+
text_model_output (`BaseModelOutputWithPooling`):
|
155 |
+
The output of the [`CLIPTextModel`].
|
156 |
+
vision_model_output (`BaseModelOutputWithPooling`):
|
157 |
+
The output of the [`CLIPVisionModel`].
|
158 |
+
"""
|
159 |
+
|
160 |
+
loss: Optional[torch.FloatTensor] = None
|
161 |
+
logits_per_image: torch.FloatTensor = None
|
162 |
+
logits_per_text: torch.FloatTensor = None
|
163 |
+
text_embeds: torch.FloatTensor = None
|
164 |
+
image_embeds: torch.FloatTensor = None
|
165 |
+
text_model_output: BaseModelOutputWithPooling = None
|
166 |
+
vision_model_output: BaseModelOutputWithPooling = None
|
167 |
+
|
168 |
+
def to_tuple(self) -> Tuple[Any]:
|
169 |
+
return tuple(
|
170 |
+
self[k] if k not in ["text_model_output", "vision_model_output"] else getattr(self, k).to_tuple()
|
171 |
+
for k in self.keys()
|
172 |
+
)
|
173 |
+
|
174 |
+
|
175 |
+
class CLIPVisionEmbeddings(nn.Module):
|
176 |
+
def __init__(self, config: CLIPVisionConfig):
|
177 |
+
super().__init__()
|
178 |
+
self.config = config
|
179 |
+
self.embed_dim = config.hidden_size
|
180 |
+
self.image_size = config.image_size
|
181 |
+
self.patch_size = config.patch_size
|
182 |
+
|
183 |
+
self.class_embedding = nn.Parameter(torch.randn(self.embed_dim))
|
184 |
+
|
185 |
+
self.patch_embedding = nn.Conv2d(
|
186 |
+
in_channels=config.num_channels,
|
187 |
+
out_channels=self.embed_dim,
|
188 |
+
kernel_size=self.patch_size,
|
189 |
+
stride=self.patch_size,
|
190 |
+
bias=False,
|
191 |
+
)
|
192 |
+
|
193 |
+
self.num_patches = (self.image_size // self.patch_size) ** 2
|
194 |
+
self.num_positions = self.num_patches + 1
|
195 |
+
self.position_embedding = nn.Embedding(self.num_positions, self.embed_dim)
|
196 |
+
self.register_buffer("position_ids", torch.arange(self.num_positions).expand((1, -1)), persistent=False)
|
197 |
+
|
198 |
+
def forward(self, pixel_values: torch.FloatTensor) -> torch.Tensor:
|
199 |
+
batch_size = pixel_values.shape[0]
|
200 |
+
target_dtype = self.patch_embedding.weight.dtype
|
201 |
+
patch_embeds = self.patch_embedding(pixel_values.to(dtype=target_dtype)) # shape = [*, width, grid, grid]
|
202 |
+
patch_embeds = patch_embeds.flatten(2).transpose(1, 2)
|
203 |
+
|
204 |
+
class_embeds = self.class_embedding.expand(batch_size, 1, -1)
|
205 |
+
embeddings = torch.cat([class_embeds, patch_embeds], dim=1)
|
206 |
+
embeddings = embeddings + self.position_embedding(self.position_ids)
|
207 |
+
return embeddings
|
208 |
+
|
209 |
+
|
210 |
+
class CLIPTextEmbeddings(nn.Module):
|
211 |
+
def __init__(self, config: CLIPTextConfig):
|
212 |
+
super().__init__()
|
213 |
+
embed_dim = config.hidden_size
|
214 |
+
|
215 |
+
self.token_embedding = nn.Embedding(config.vocab_size, embed_dim)
|
216 |
+
self.position_embedding = nn.Embedding(config.max_position_embeddings, embed_dim)
|
217 |
+
|
218 |
+
# position_ids (1, len position emb) is contiguous in memory and exported when serialized
|
219 |
+
self.register_buffer(
|
220 |
+
"position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False
|
221 |
+
)
|
222 |
+
|
223 |
+
def forward(
|
224 |
+
self,
|
225 |
+
input_ids: Optional[torch.LongTensor] = None,
|
226 |
+
position_ids: Optional[torch.LongTensor] = None,
|
227 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
228 |
+
) -> torch.Tensor:
|
229 |
+
seq_length = input_ids.shape[-1] if input_ids is not None else inputs_embeds.shape[-2]
|
230 |
+
|
231 |
+
if position_ids is None:
|
232 |
+
position_ids = self.position_ids[:, :seq_length]
|
233 |
+
|
234 |
+
if inputs_embeds is None:
|
235 |
+
inputs_embeds = self.token_embedding(input_ids)
|
236 |
+
|
237 |
+
position_embeddings = self.position_embedding(position_ids)
|
238 |
+
embeddings = inputs_embeds + position_embeddings
|
239 |
+
|
240 |
+
return embeddings
|
241 |
+
|
242 |
+
|
243 |
+
class CLIPAttention(nn.Module):
|
244 |
+
"""Multi-headed attention from 'Attention Is All You Need' paper"""
|
245 |
+
|
246 |
+
def __init__(self, config):
|
247 |
+
super().__init__()
|
248 |
+
self.config = config
|
249 |
+
self.embed_dim = config.hidden_size
|
250 |
+
self.num_heads = config.num_attention_heads
|
251 |
+
self.head_dim = self.embed_dim // self.num_heads
|
252 |
+
if self.head_dim * self.num_heads != self.embed_dim:
|
253 |
+
raise ValueError(
|
254 |
+
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:"
|
255 |
+
f" {self.num_heads})."
|
256 |
+
)
|
257 |
+
self.scale = self.head_dim**-0.5
|
258 |
+
self.dropout = config.attention_dropout
|
259 |
+
|
260 |
+
self.k_proj = nn.Linear(self.embed_dim, self.embed_dim)
|
261 |
+
self.v_proj = nn.Linear(self.embed_dim, self.embed_dim)
|
262 |
+
self.q_proj = nn.Linear(self.embed_dim, self.embed_dim)
|
263 |
+
self.out_proj = nn.Linear(self.embed_dim, self.embed_dim)
|
264 |
+
|
265 |
+
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
|
266 |
+
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
|
267 |
+
|
268 |
+
def forward(
|
269 |
+
self,
|
270 |
+
hidden_states: torch.Tensor,
|
271 |
+
attention_mask: Optional[torch.Tensor] = None,
|
272 |
+
causal_attention_mask: Optional[torch.Tensor] = None,
|
273 |
+
output_attentions: Optional[bool] = False,
|
274 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor]]:
|
275 |
+
"""Input shape: Batch x Time x Channel"""
|
276 |
+
|
277 |
+
bsz, tgt_len, embed_dim = hidden_states.size()
|
278 |
+
|
279 |
+
# get query proj
|
280 |
+
query_states = self.q_proj(hidden_states) * self.scale
|
281 |
+
key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
|
282 |
+
value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
|
283 |
+
|
284 |
+
proj_shape = (bsz * self.num_heads, -1, self.head_dim)
|
285 |
+
query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape)
|
286 |
+
key_states = key_states.view(*proj_shape)
|
287 |
+
value_states = value_states.view(*proj_shape)
|
288 |
+
|
289 |
+
src_len = key_states.size(1)
|
290 |
+
attn_weights = torch.bmm(query_states, key_states.transpose(1, 2))
|
291 |
+
|
292 |
+
if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len):
|
293 |
+
raise ValueError(
|
294 |
+
f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is"
|
295 |
+
f" {attn_weights.size()}"
|
296 |
+
)
|
297 |
+
|
298 |
+
# apply the causal_attention_mask first
|
299 |
+
if causal_attention_mask is not None:
|
300 |
+
if causal_attention_mask.size() != (bsz, 1, tgt_len, src_len):
|
301 |
+
raise ValueError(
|
302 |
+
f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is"
|
303 |
+
f" {causal_attention_mask.size()}"
|
304 |
+
)
|
305 |
+
attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + causal_attention_mask
|
306 |
+
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
|
307 |
+
|
308 |
+
if attention_mask is not None:
|
309 |
+
if attention_mask.size() != (bsz, 1, tgt_len, src_len):
|
310 |
+
raise ValueError(
|
311 |
+
f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {attention_mask.size()}"
|
312 |
+
)
|
313 |
+
attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attention_mask
|
314 |
+
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
|
315 |
+
|
316 |
+
attn_weights = nn.functional.softmax(attn_weights, dim=-1)
|
317 |
+
|
318 |
+
if output_attentions:
|
319 |
+
# this operation is a bit akward, but it's required to
|
320 |
+
# make sure that attn_weights keeps its gradient.
|
321 |
+
# In order to do so, attn_weights have to reshaped
|
322 |
+
# twice and have to be reused in the following
|
323 |
+
attn_weights_reshaped = attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
|
324 |
+
attn_weights = attn_weights_reshaped.view(bsz * self.num_heads, tgt_len, src_len)
|
325 |
+
else:
|
326 |
+
attn_weights_reshaped = None
|
327 |
+
|
328 |
+
attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training)
|
329 |
+
|
330 |
+
attn_output = torch.bmm(attn_probs, value_states)
|
331 |
+
|
332 |
+
if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim):
|
333 |
+
raise ValueError(
|
334 |
+
f"`attn_output` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is"
|
335 |
+
f" {attn_output.size()}"
|
336 |
+
)
|
337 |
+
|
338 |
+
attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim)
|
339 |
+
attn_output = attn_output.transpose(1, 2)
|
340 |
+
attn_output = attn_output.reshape(bsz, tgt_len, embed_dim)
|
341 |
+
|
342 |
+
attn_output = self.out_proj(attn_output)
|
343 |
+
|
344 |
+
return attn_output, attn_weights_reshaped
|
345 |
+
|
346 |
+
|
347 |
+
class CLIPFlashAttention2(CLIPAttention):
|
348 |
+
"""
|
349 |
+
CLIPAttention flash attention module. This module inherits from `CLIPAttention` as the weights of the module stays
|
350 |
+
untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
|
351 |
+
flash attention and deal with padding tokens in case the input contains any of them.
|
352 |
+
"""
|
353 |
+
|
354 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2.__init__
|
355 |
+
def __init__(self, *args, **kwargs):
|
356 |
+
super().__init__(*args, **kwargs)
|
357 |
+
|
358 |
+
# TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1.
|
359 |
+
# flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0.
|
360 |
+
# Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left).
|
361 |
+
self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10()
|
362 |
+
|
363 |
+
# Adapted from transformers.models.llama.modeling_llama.LlamaFlashAttention2.forward
|
364 |
+
def forward(
|
365 |
+
self,
|
366 |
+
hidden_states: torch.Tensor,
|
367 |
+
attention_mask: Optional[torch.Tensor] = None,
|
368 |
+
causal_attention_mask: Optional[torch.Tensor] = None,
|
369 |
+
output_attentions: Optional[bool] = False,
|
370 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor]]:
|
371 |
+
output_attentions = False
|
372 |
+
|
373 |
+
batch_size, q_len, _ = hidden_states.size()
|
374 |
+
|
375 |
+
query_states = self.q_proj(hidden_states)
|
376 |
+
key_states = self.k_proj(hidden_states)
|
377 |
+
value_states = self.v_proj(hidden_states)
|
378 |
+
|
379 |
+
# Flash attention requires the input to have the shape
|
380 |
+
# batch_size x seq_length x head_dim x hidden_dim
|
381 |
+
# therefore we just need to keep the original shape
|
382 |
+
query_states = query_states.view(batch_size, q_len, self.num_heads, self.head_dim)
|
383 |
+
key_states = key_states.view(batch_size, q_len, self.num_heads, self.head_dim)
|
384 |
+
value_states = value_states.view(batch_size, q_len, self.num_heads, self.head_dim)
|
385 |
+
|
386 |
+
dropout_rate = self.dropout if self.training else 0.0
|
387 |
+
|
388 |
+
# In PEFT, usually we cast the layer norms in float32 for training stability reasons
|
389 |
+
# therefore the input hidden states gets silently casted in float32. Hence, we need
|
390 |
+
# cast them back in the correct dtype just to be sure everything works as expected.
|
391 |
+
# This might slowdown training & inference so it is recommended to not cast the LayerNorms
|
392 |
+
# in fp32.
|
393 |
+
|
394 |
+
input_dtype = query_states.dtype
|
395 |
+
if input_dtype == torch.float32:
|
396 |
+
if torch.is_autocast_enabled():
|
397 |
+
target_dtype = torch.get_autocast_gpu_dtype()
|
398 |
+
# Handle the case where the model is quantized
|
399 |
+
elif hasattr(self.config, "_pre_quantization_dtype"):
|
400 |
+
target_dtype = self.config._pre_quantization_dtype
|
401 |
+
else:
|
402 |
+
target_dtype = self.q_proj.weight.dtype
|
403 |
+
|
404 |
+
logger.warning_once(
|
405 |
+
f"The input hidden states seems to be silently casted in float32, this might be related to"
|
406 |
+
f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
|
407 |
+
f" {target_dtype}."
|
408 |
+
)
|
409 |
+
|
410 |
+
query_states = query_states.to(target_dtype)
|
411 |
+
key_states = key_states.to(target_dtype)
|
412 |
+
value_states = value_states.to(target_dtype)
|
413 |
+
|
414 |
+
attn_output = _flash_attention_forward(
|
415 |
+
query_states,
|
416 |
+
key_states,
|
417 |
+
value_states,
|
418 |
+
attention_mask,
|
419 |
+
q_len,
|
420 |
+
dropout=dropout_rate,
|
421 |
+
is_causal=causal_attention_mask is not None,
|
422 |
+
use_top_left_mask=self._flash_attn_uses_top_left_mask,
|
423 |
+
)
|
424 |
+
|
425 |
+
attn_output = attn_output.reshape(batch_size, q_len, self.embed_dim).contiguous()
|
426 |
+
attn_output = self.out_proj(attn_output)
|
427 |
+
|
428 |
+
if not output_attentions:
|
429 |
+
attn_weights = None
|
430 |
+
|
431 |
+
return attn_output, attn_weights
|
432 |
+
|
433 |
+
|
434 |
+
class CLIPSdpaAttention(CLIPAttention):
|
435 |
+
"""
|
436 |
+
SDPA attention module using torch.nn.functional.scaled_dot_product_attention. This module inherits from
|
437 |
+
`CLIPAttention` as the weights of the module stays untouched. The only changes are on the forward pass to adapt to
|
438 |
+
SDPA API.
|
439 |
+
"""
|
440 |
+
|
441 |
+
# Adapted from CLIPAttention.forward
|
442 |
+
def forward(
|
443 |
+
self,
|
444 |
+
hidden_states: torch.Tensor,
|
445 |
+
attention_mask: Optional[torch.Tensor] = None,
|
446 |
+
causal_attention_mask: Optional[torch.Tensor] = None,
|
447 |
+
output_attentions: Optional[bool] = False,
|
448 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor]]:
|
449 |
+
if output_attentions:
|
450 |
+
# TODO: Improve this warning with e.g. `model.config.attn_implementation = "manual"` once this is implemented.
|
451 |
+
logger.warning_once(
|
452 |
+
"CLIPModel is using CLIPSdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not "
|
453 |
+
"support `output_attentions=True`. Falling back to the manual attention implementation, but specifying "
|
454 |
+
"the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can "
|
455 |
+
'be removed using the argument `attn_implementation="eager"` when loading the model.'
|
456 |
+
)
|
457 |
+
return super().forward(
|
458 |
+
hidden_states=hidden_states,
|
459 |
+
attention_mask=attention_mask,
|
460 |
+
causal_attention_mask=causal_attention_mask,
|
461 |
+
output_attentions=output_attentions,
|
462 |
+
)
|
463 |
+
|
464 |
+
# CLIP text model uses both `causal_attention_mask` and `attention_mask`
|
465 |
+
if attention_mask is not None and causal_attention_mask is not None:
|
466 |
+
attn_mask = attention_mask + causal_attention_mask
|
467 |
+
elif causal_attention_mask is not None:
|
468 |
+
attn_mask = causal_attention_mask
|
469 |
+
else:
|
470 |
+
attn_mask = attention_mask
|
471 |
+
|
472 |
+
bsz, tgt_len, embed_dim = hidden_states.size()
|
473 |
+
|
474 |
+
query_states = self.q_proj(hidden_states)
|
475 |
+
key_states = self.k_proj(hidden_states)
|
476 |
+
value_states = self.v_proj(hidden_states)
|
477 |
+
|
478 |
+
query_states = query_states.view(bsz, -1, self.num_heads, self.head_dim).transpose(1, 2)
|
479 |
+
key_states = key_states.view(bsz, -1, self.num_heads, self.head_dim).transpose(1, 2)
|
480 |
+
value_states = value_states.view(bsz, -1, self.num_heads, self.head_dim).transpose(1, 2)
|
481 |
+
|
482 |
+
# SDPA with memory-efficient backend is currently (torch==2.1.2) bugged with non-contiguous inputs with custom attn_mask,
|
483 |
+
# Reference: https://github.com/pytorch/pytorch/issues/112577.
|
484 |
+
if not is_torch_greater_or_equal_than_2_2 and query_states.device.type == "cuda" and attn_mask is not None:
|
485 |
+
query_states = query_states.contiguous()
|
486 |
+
key_states = key_states.contiguous()
|
487 |
+
value_states = value_states.contiguous()
|
488 |
+
|
489 |
+
# CLIP text model uses both `causal_attention_mask` and `attention_mask` sequentially.
|
490 |
+
attn_output = torch.nn.functional.scaled_dot_product_attention(
|
491 |
+
query_states,
|
492 |
+
key_states,
|
493 |
+
value_states,
|
494 |
+
attn_mask=attn_mask,
|
495 |
+
dropout_p=self.dropout if self.training else 0.0,
|
496 |
+
scale=self.scale,
|
497 |
+
)
|
498 |
+
|
499 |
+
attn_output = attn_output.transpose(1, 2)
|
500 |
+
attn_output = attn_output.reshape(bsz, tgt_len, embed_dim)
|
501 |
+
|
502 |
+
attn_output = self.out_proj(attn_output)
|
503 |
+
|
504 |
+
return attn_output, None
|
505 |
+
|
506 |
+
|
507 |
+
CLIP_ATTENTION_CLASSES = {
|
508 |
+
"eager": CLIPAttention,
|
509 |
+
"sdpa": CLIPSdpaAttention,
|
510 |
+
"flash_attention_2": CLIPFlashAttention2,
|
511 |
+
}
|
512 |
+
|
513 |
+
|
514 |
+
class CLIPMLP(nn.Module):
|
515 |
+
def __init__(self, config):
|
516 |
+
super().__init__()
|
517 |
+
self.config = config
|
518 |
+
self.activation_fn = ACT2FN[config.hidden_act]
|
519 |
+
self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size)
|
520 |
+
self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size)
|
521 |
+
|
522 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
523 |
+
hidden_states = self.fc1(hidden_states)
|
524 |
+
hidden_states = self.activation_fn(hidden_states)
|
525 |
+
hidden_states = self.fc2(hidden_states)
|
526 |
+
return hidden_states
|
527 |
+
|
528 |
+
|
529 |
+
class CLIPEncoderLayer(nn.Module):
|
530 |
+
def __init__(self, config: CLIPConfig):
|
531 |
+
super().__init__()
|
532 |
+
self.embed_dim = config.hidden_size
|
533 |
+
self.self_attn = CLIP_ATTENTION_CLASSES[config._attn_implementation](config)
|
534 |
+
self.layer_norm1 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
|
535 |
+
self.mlp = CLIPMLP(config)
|
536 |
+
self.layer_norm2 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
|
537 |
+
|
538 |
+
def forward(
|
539 |
+
self,
|
540 |
+
hidden_states: torch.Tensor,
|
541 |
+
attention_mask: torch.Tensor,
|
542 |
+
causal_attention_mask: torch.Tensor,
|
543 |
+
output_attentions: Optional[bool] = False,
|
544 |
+
) -> Tuple[torch.FloatTensor]:
|
545 |
+
"""
|
546 |
+
Args:
|
547 |
+
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
|
548 |
+
attention_mask (`torch.FloatTensor`): attention mask of size
|
549 |
+
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
|
550 |
+
`(config.encoder_attention_heads,)`.
|
551 |
+
output_attentions (`bool`, *optional*):
|
552 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
553 |
+
returned tensors for more detail.
|
554 |
+
"""
|
555 |
+
residual = hidden_states
|
556 |
+
|
557 |
+
hidden_states = self.layer_norm1(hidden_states)
|
558 |
+
hidden_states, attn_weights = self.self_attn(
|
559 |
+
hidden_states=hidden_states,
|
560 |
+
attention_mask=attention_mask,
|
561 |
+
causal_attention_mask=causal_attention_mask,
|
562 |
+
output_attentions=output_attentions,
|
563 |
+
)
|
564 |
+
hidden_states = residual + hidden_states
|
565 |
+
|
566 |
+
residual = hidden_states
|
567 |
+
hidden_states = self.layer_norm2(hidden_states)
|
568 |
+
hidden_states = self.mlp(hidden_states)
|
569 |
+
hidden_states = residual + hidden_states
|
570 |
+
|
571 |
+
outputs = (hidden_states,)
|
572 |
+
|
573 |
+
if output_attentions:
|
574 |
+
outputs += (attn_weights,)
|
575 |
+
|
576 |
+
return outputs
|
577 |
+
|
578 |
+
|
579 |
+
class CLIPPreTrainedModel(PreTrainedModel):
|
580 |
+
"""
|
581 |
+
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
582 |
+
models.
|
583 |
+
"""
|
584 |
+
|
585 |
+
config_class = CLIPConfig
|
586 |
+
base_model_prefix = "clip"
|
587 |
+
supports_gradient_checkpointing = True
|
588 |
+
_supports_sdpa = True
|
589 |
+
_supports_flash_attn_2 = True
|
590 |
+
|
591 |
+
def _init_weights(self, module):
|
592 |
+
"""Initialize the weights"""
|
593 |
+
factor = self.config.initializer_factor
|
594 |
+
if isinstance(module, CLIPTextEmbeddings):
|
595 |
+
module.token_embedding.weight.data.normal_(mean=0.0, std=factor * 0.02)
|
596 |
+
module.position_embedding.weight.data.normal_(mean=0.0, std=factor * 0.02)
|
597 |
+
elif isinstance(module, CLIPVisionEmbeddings):
|
598 |
+
factor = self.config.initializer_factor
|
599 |
+
nn.init.normal_(module.class_embedding, mean=0.0, std=module.embed_dim**-0.5 * factor)
|
600 |
+
nn.init.normal_(module.patch_embedding.weight, std=module.config.initializer_range * factor)
|
601 |
+
nn.init.normal_(module.position_embedding.weight, std=module.config.initializer_range * factor)
|
602 |
+
elif isinstance(module, CLIPAttention):
|
603 |
+
factor = self.config.initializer_factor
|
604 |
+
in_proj_std = (module.embed_dim**-0.5) * ((2 * module.config.num_hidden_layers) ** -0.5) * factor
|
605 |
+
out_proj_std = (module.embed_dim**-0.5) * factor
|
606 |
+
nn.init.normal_(module.q_proj.weight, std=in_proj_std)
|
607 |
+
nn.init.normal_(module.k_proj.weight, std=in_proj_std)
|
608 |
+
nn.init.normal_(module.v_proj.weight, std=in_proj_std)
|
609 |
+
nn.init.normal_(module.out_proj.weight, std=out_proj_std)
|
610 |
+
elif isinstance(module, CLIPMLP):
|
611 |
+
factor = self.config.initializer_factor
|
612 |
+
in_proj_std = (module.config.hidden_size**-0.5) * ((2 * module.config.num_hidden_layers) ** -0.5) * factor
|
613 |
+
fc_std = (2 * module.config.hidden_size) ** -0.5 * factor
|
614 |
+
nn.init.normal_(module.fc1.weight, std=fc_std)
|
615 |
+
nn.init.normal_(module.fc2.weight, std=in_proj_std)
|
616 |
+
elif isinstance(module, CLIPModel):
|
617 |
+
nn.init.normal_(
|
618 |
+
module.text_projection.weight,
|
619 |
+
std=module.text_embed_dim**-0.5 * self.config.initializer_factor,
|
620 |
+
)
|
621 |
+
nn.init.normal_(
|
622 |
+
module.visual_projection.weight,
|
623 |
+
std=module.vision_embed_dim**-0.5 * self.config.initializer_factor,
|
624 |
+
)
|
625 |
+
elif isinstance(module, CLIPVisionModelWithProjection):
|
626 |
+
nn.init.normal_(
|
627 |
+
module.visual_projection.weight,
|
628 |
+
std=self.config.hidden_size**-0.5 * self.config.initializer_factor,
|
629 |
+
)
|
630 |
+
elif isinstance(module, CLIPTextModelWithProjection):
|
631 |
+
nn.init.normal_(
|
632 |
+
module.text_projection.weight,
|
633 |
+
std=self.config.hidden_size**-0.5 * self.config.initializer_factor,
|
634 |
+
)
|
635 |
+
elif isinstance(module, CLIPForImageClassification):
|
636 |
+
nn.init.normal_(
|
637 |
+
module.classifier.weight,
|
638 |
+
std=self.config.vision_config.hidden_size**-0.5 * self.config.initializer_factor,
|
639 |
+
)
|
640 |
+
|
641 |
+
if isinstance(module, nn.LayerNorm):
|
642 |
+
module.bias.data.zero_()
|
643 |
+
module.weight.data.fill_(1.0)
|
644 |
+
if isinstance(module, nn.Linear) and module.bias is not None:
|
645 |
+
module.bias.data.zero_()
|
646 |
+
|
647 |
+
|
648 |
+
CLIP_START_DOCSTRING = r"""
|
649 |
+
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
650 |
+
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
651 |
+
etc.)
|
652 |
+
|
653 |
+
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
654 |
+
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
655 |
+
and behavior.
|
656 |
+
|
657 |
+
Parameters:
|
658 |
+
config ([`CLIPConfig`]): Model configuration class with all the parameters of the model.
|
659 |
+
Initializing with a config file does not load the weights associated with the model, only the
|
660 |
+
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
661 |
+
"""
|
662 |
+
|
663 |
+
CLIP_TEXT_INPUTS_DOCSTRING = r"""
|
664 |
+
Args:
|
665 |
+
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
666 |
+
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
|
667 |
+
it.
|
668 |
+
|
669 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
670 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
671 |
+
|
672 |
+
[What are input IDs?](../glossary#input-ids)
|
673 |
+
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
674 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
675 |
+
|
676 |
+
- 1 for tokens that are **not masked**,
|
677 |
+
- 0 for tokens that are **masked**.
|
678 |
+
|
679 |
+
[What are attention masks?](../glossary#attention-mask)
|
680 |
+
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
681 |
+
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
682 |
+
config.max_position_embeddings - 1]`.
|
683 |
+
|
684 |
+
[What are position IDs?](../glossary#position-ids)
|
685 |
+
output_attentions (`bool`, *optional*):
|
686 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
687 |
+
tensors for more detail.
|
688 |
+
output_hidden_states (`bool`, *optional*):
|
689 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
690 |
+
more detail.
|
691 |
+
return_dict (`bool`, *optional*):
|
692 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
693 |
+
"""
|
694 |
+
|
695 |
+
CLIP_VISION_INPUTS_DOCSTRING = r"""
|
696 |
+
Args:
|
697 |
+
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
|
698 |
+
Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using
|
699 |
+
[`AutoImageProcessor`]. See [`CLIPImageProcessor.__call__`] for details.
|
700 |
+
output_attentions (`bool`, *optional*):
|
701 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
702 |
+
tensors for more detail.
|
703 |
+
output_hidden_states (`bool`, *optional*):
|
704 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
705 |
+
more detail.
|
706 |
+
return_dict (`bool`, *optional*):
|
707 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
708 |
+
"""
|
709 |
+
|
710 |
+
CLIP_INPUTS_DOCSTRING = r"""
|
711 |
+
Args:
|
712 |
+
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
713 |
+
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
|
714 |
+
it.
|
715 |
+
|
716 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
717 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
718 |
+
|
719 |
+
[What are input IDs?](../glossary#input-ids)
|
720 |
+
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
721 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
722 |
+
|
723 |
+
- 1 for tokens that are **not masked**,
|
724 |
+
- 0 for tokens that are **masked**.
|
725 |
+
|
726 |
+
[What are attention masks?](../glossary#attention-mask)
|
727 |
+
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
728 |
+
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
729 |
+
config.max_position_embeddings - 1]`.
|
730 |
+
|
731 |
+
[What are position IDs?](../glossary#position-ids)
|
732 |
+
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
|
733 |
+
Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using
|
734 |
+
[`AutoImageProcessor`]. See [`CLIPImageProcessor.__call__`] for details.
|
735 |
+
return_loss (`bool`, *optional*):
|
736 |
+
Whether or not to return the contrastive loss.
|
737 |
+
output_attentions (`bool`, *optional*):
|
738 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
739 |
+
tensors for more detail.
|
740 |
+
output_hidden_states (`bool`, *optional*):
|
741 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
742 |
+
more detail.
|
743 |
+
return_dict (`bool`, *optional*):
|
744 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
745 |
+
"""
|
746 |
+
|
747 |
+
|
748 |
+
class CLIPEncoder(nn.Module):
|
749 |
+
"""
|
750 |
+
Transformer encoder consisting of `config.num_hidden_layers` self attention layers. Each layer is a
|
751 |
+
[`CLIPEncoderLayer`].
|
752 |
+
|
753 |
+
Args:
|
754 |
+
config: CLIPConfig
|
755 |
+
"""
|
756 |
+
|
757 |
+
def __init__(self, config: CLIPConfig):
|
758 |
+
super().__init__()
|
759 |
+
self.config = config
|
760 |
+
self.layers = nn.ModuleList([CLIPEncoderLayer(config) for _ in range(config.num_hidden_layers)])
|
761 |
+
self.gradient_checkpointing = False
|
762 |
+
|
763 |
+
def forward(
|
764 |
+
self,
|
765 |
+
inputs_embeds,
|
766 |
+
attention_mask: Optional[torch.Tensor] = None,
|
767 |
+
causal_attention_mask: Optional[torch.Tensor] = None,
|
768 |
+
output_attentions: Optional[bool] = None,
|
769 |
+
output_hidden_states: Optional[bool] = None,
|
770 |
+
return_dict: Optional[bool] = None,
|
771 |
+
) -> Union[Tuple, BaseModelOutput]:
|
772 |
+
r"""
|
773 |
+
Args:
|
774 |
+
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
|
775 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
|
776 |
+
This is useful if you want more control over how to convert `input_ids` indices into associated vectors
|
777 |
+
than the model's internal embedding lookup matrix.
|
778 |
+
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
779 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
780 |
+
|
781 |
+
- 1 for tokens that are **not masked**,
|
782 |
+
- 0 for tokens that are **masked**.
|
783 |
+
|
784 |
+
[What are attention masks?](../glossary#attention-mask)
|
785 |
+
causal_attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
786 |
+
Causal mask for the text model. Mask values selected in `[0, 1]`:
|
787 |
+
|
788 |
+
- 1 for tokens that are **not masked**,
|
789 |
+
- 0 for tokens that are **masked**.
|
790 |
+
|
791 |
+
[What are attention masks?](../glossary#attention-mask)
|
792 |
+
output_attentions (`bool`, *optional*):
|
793 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
794 |
+
returned tensors for more detail.
|
795 |
+
output_hidden_states (`bool`, *optional*):
|
796 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
|
797 |
+
for more detail.
|
798 |
+
return_dict (`bool`, *optional*):
|
799 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
800 |
+
"""
|
801 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
802 |
+
output_hidden_states = (
|
803 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
804 |
+
)
|
805 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
806 |
+
|
807 |
+
encoder_states = () if output_hidden_states else None
|
808 |
+
all_attentions = () if output_attentions else None
|
809 |
+
|
810 |
+
hidden_states = inputs_embeds
|
811 |
+
for idx, encoder_layer in enumerate(self.layers):
|
812 |
+
if output_hidden_states:
|
813 |
+
encoder_states = encoder_states + (hidden_states,)
|
814 |
+
if self.gradient_checkpointing and self.training:
|
815 |
+
layer_outputs = self._gradient_checkpointing_func(
|
816 |
+
encoder_layer.__call__,
|
817 |
+
hidden_states,
|
818 |
+
attention_mask,
|
819 |
+
causal_attention_mask,
|
820 |
+
output_attentions,
|
821 |
+
)
|
822 |
+
else:
|
823 |
+
layer_outputs = encoder_layer(
|
824 |
+
hidden_states,
|
825 |
+
attention_mask,
|
826 |
+
causal_attention_mask,
|
827 |
+
output_attentions=output_attentions,
|
828 |
+
)
|
829 |
+
|
830 |
+
hidden_states = layer_outputs[0]
|
831 |
+
|
832 |
+
if output_attentions:
|
833 |
+
all_attentions = all_attentions + (layer_outputs[1],)
|
834 |
+
|
835 |
+
if output_hidden_states:
|
836 |
+
encoder_states = encoder_states + (hidden_states,)
|
837 |
+
|
838 |
+
if not return_dict:
|
839 |
+
return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None)
|
840 |
+
return BaseModelOutput(
|
841 |
+
last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions
|
842 |
+
)
|
843 |
+
|
844 |
+
|
845 |
+
class CLIPTextTransformer(nn.Module):
|
846 |
+
def __init__(self, config: CLIPTextConfig):
|
847 |
+
super().__init__()
|
848 |
+
self.config = config
|
849 |
+
embed_dim = config.hidden_size
|
850 |
+
self.embeddings = CLIPTextEmbeddings(config)
|
851 |
+
self.encoder = CLIPEncoder(config)
|
852 |
+
self.final_layer_norm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps)
|
853 |
+
|
854 |
+
# For `pooled_output` computation
|
855 |
+
self.eos_token_id = config.eos_token_id
|
856 |
+
|
857 |
+
# For attention mask, it differs between `flash_attention_2` and other attention implementations
|
858 |
+
self._use_flash_attention_2 = config._attn_implementation == "flash_attention_2"
|
859 |
+
|
860 |
+
@add_start_docstrings_to_model_forward(CLIP_TEXT_INPUTS_DOCSTRING)
|
861 |
+
@replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=CLIPTextConfig)
|
862 |
+
def forward(
|
863 |
+
self,
|
864 |
+
input_ids: Optional[torch.Tensor] = None,
|
865 |
+
attention_mask: Optional[torch.Tensor] = None,
|
866 |
+
position_ids: Optional[torch.Tensor] = None,
|
867 |
+
output_attentions: Optional[bool] = None,
|
868 |
+
output_hidden_states: Optional[bool] = None,
|
869 |
+
return_dict: Optional[bool] = None,
|
870 |
+
) -> Union[Tuple, BaseModelOutputWithPooling]:
|
871 |
+
r"""
|
872 |
+
Returns:
|
873 |
+
|
874 |
+
"""
|
875 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
876 |
+
output_hidden_states = (
|
877 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
878 |
+
)
|
879 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
880 |
+
|
881 |
+
if input_ids is None:
|
882 |
+
raise ValueError("You have to specify input_ids")
|
883 |
+
|
884 |
+
input_shape = input_ids.size()
|
885 |
+
input_ids = input_ids.view(-1, input_shape[-1])
|
886 |
+
|
887 |
+
hidden_states = self.embeddings(input_ids=input_ids, position_ids=position_ids)
|
888 |
+
|
889 |
+
# CLIP's text model uses causal mask, prepare it here.
|
890 |
+
# https://github.com/openai/CLIP/blob/cfcffb90e69f37bf2ff1e988237a0fbe41f33c04/clip/model.py#L324
|
891 |
+
causal_attention_mask = _create_4d_causal_attention_mask(
|
892 |
+
input_shape, hidden_states.dtype, device=hidden_states.device
|
893 |
+
)
|
894 |
+
|
895 |
+
# expand attention_mask
|
896 |
+
if attention_mask is not None and not self._use_flash_attention_2:
|
897 |
+
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
|
898 |
+
attention_mask = _prepare_4d_attention_mask(attention_mask, hidden_states.dtype)
|
899 |
+
|
900 |
+
encoder_outputs = self.encoder(
|
901 |
+
inputs_embeds=hidden_states,
|
902 |
+
attention_mask=attention_mask,
|
903 |
+
causal_attention_mask=causal_attention_mask,
|
904 |
+
output_attentions=output_attentions,
|
905 |
+
output_hidden_states=output_hidden_states,
|
906 |
+
return_dict=return_dict,
|
907 |
+
)
|
908 |
+
|
909 |
+
last_hidden_state = encoder_outputs[0]
|
910 |
+
last_hidden_state = self.final_layer_norm(last_hidden_state)
|
911 |
+
|
912 |
+
if self.eos_token_id == 2:
|
913 |
+
# The `eos_token_id` was incorrect before PR #24773: Let's keep what have been done here.
|
914 |
+
# A CLIP model with such `eos_token_id` in the config can't work correctly with extra new tokens added
|
915 |
+
# ------------------------------------------------------------
|
916 |
+
# text_embeds.shape = [batch_size, sequence_length, transformer.width]
|
917 |
+
# take features from the eot embedding (eot_token is the highest number in each sequence)
|
918 |
+
# casting to torch.int for onnx compatibility: argmax doesn't support int64 inputs with opset 14
|
919 |
+
pooled_output = last_hidden_state[
|
920 |
+
torch.arange(last_hidden_state.shape[0], device=last_hidden_state.device),
|
921 |
+
input_ids.to(dtype=torch.int, device=last_hidden_state.device).argmax(dim=-1),
|
922 |
+
]
|
923 |
+
else:
|
924 |
+
# The config gets updated `eos_token_id` from PR #24773 (so the use of exta new tokens is possible)
|
925 |
+
pooled_output = last_hidden_state[
|
926 |
+
torch.arange(last_hidden_state.shape[0], device=last_hidden_state.device),
|
927 |
+
# We need to get the first position of `eos_token_id` value (`pad_token_ids` might equal to `eos_token_id`)
|
928 |
+
# Note: we assume each sequence (along batch dim.) contains an `eos_token_id` (e.g. prepared by the tokenizer)
|
929 |
+
(input_ids.to(dtype=torch.int, device=last_hidden_state.device) == self.eos_token_id)
|
930 |
+
.int()
|
931 |
+
.argmax(dim=-1),
|
932 |
+
]
|
933 |
+
|
934 |
+
if not return_dict:
|
935 |
+
return (last_hidden_state, pooled_output) + encoder_outputs[1:]
|
936 |
+
|
937 |
+
return BaseModelOutputWithPooling(
|
938 |
+
last_hidden_state=last_hidden_state,
|
939 |
+
pooler_output=pooled_output,
|
940 |
+
hidden_states=encoder_outputs.hidden_states,
|
941 |
+
attentions=encoder_outputs.attentions,
|
942 |
+
)
|
943 |
+
|
944 |
+
|
945 |
+
@add_start_docstrings(
|
946 |
+
"""The text model from CLIP without any head or projection on top.""",
|
947 |
+
CLIP_START_DOCSTRING,
|
948 |
+
)
|
949 |
+
class CLIPTextModel(CLIPPreTrainedModel):
|
950 |
+
config_class = CLIPTextConfig
|
951 |
+
|
952 |
+
_no_split_modules = ["CLIPTextEmbeddings", "CLIPEncoderLayer"]
|
953 |
+
|
954 |
+
def __init__(self, config: CLIPTextConfig):
|
955 |
+
super().__init__(config)
|
956 |
+
self.text_model = CLIPTextTransformer(config)
|
957 |
+
# Initialize weights and apply final processing
|
958 |
+
self.post_init()
|
959 |
+
|
960 |
+
def get_input_embeddings(self) -> nn.Module:
|
961 |
+
return self.text_model.embeddings.token_embedding
|
962 |
+
|
963 |
+
def set_input_embeddings(self, value):
|
964 |
+
self.text_model.embeddings.token_embedding = value
|
965 |
+
|
966 |
+
@add_start_docstrings_to_model_forward(CLIP_TEXT_INPUTS_DOCSTRING)
|
967 |
+
@replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=CLIPTextConfig)
|
968 |
+
def forward(
|
969 |
+
self,
|
970 |
+
input_ids: Optional[torch.Tensor] = None,
|
971 |
+
attention_mask: Optional[torch.Tensor] = None,
|
972 |
+
position_ids: Optional[torch.Tensor] = None,
|
973 |
+
output_attentions: Optional[bool] = None,
|
974 |
+
output_hidden_states: Optional[bool] = None,
|
975 |
+
return_dict: Optional[bool] = None,
|
976 |
+
) -> Union[Tuple, BaseModelOutputWithPooling]:
|
977 |
+
r"""
|
978 |
+
Returns:
|
979 |
+
|
980 |
+
Examples:
|
981 |
+
|
982 |
+
```python
|
983 |
+
>>> from transformers import AutoTokenizer, CLIPTextModel
|
984 |
+
|
985 |
+
>>> model = CLIPTextModel.from_pretrained("openai/clip-vit-base-patch32")
|
986 |
+
>>> tokenizer = AutoTokenizer.from_pretrained("openai/clip-vit-base-patch32")
|
987 |
+
|
988 |
+
>>> inputs = tokenizer(["a photo of a cat", "a photo of a dog"], padding=True, return_tensors="pt")
|
989 |
+
|
990 |
+
>>> outputs = model(**inputs)
|
991 |
+
>>> last_hidden_state = outputs.last_hidden_state
|
992 |
+
>>> pooled_output = outputs.pooler_output # pooled (EOS token) states
|
993 |
+
```"""
|
994 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
995 |
+
|
996 |
+
return self.text_model(
|
997 |
+
input_ids=input_ids,
|
998 |
+
attention_mask=attention_mask,
|
999 |
+
position_ids=position_ids,
|
1000 |
+
output_attentions=output_attentions,
|
1001 |
+
output_hidden_states=output_hidden_states,
|
1002 |
+
return_dict=return_dict,
|
1003 |
+
)
|
1004 |
+
|
1005 |
+
|
1006 |
+
class CLIPVisionTransformer(nn.Module):
|
1007 |
+
def __init__(self, config: CLIPVisionConfig):
|
1008 |
+
super().__init__()
|
1009 |
+
self.config = config
|
1010 |
+
embed_dim = config.hidden_size
|
1011 |
+
|
1012 |
+
self.embeddings = CLIPVisionEmbeddings(config)
|
1013 |
+
self.pre_layrnorm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps)
|
1014 |
+
self.encoder = CLIPEncoder(config)
|
1015 |
+
self.post_layernorm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps)
|
1016 |
+
|
1017 |
+
@add_start_docstrings_to_model_forward(CLIP_VISION_INPUTS_DOCSTRING)
|
1018 |
+
@replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=CLIPVisionConfig)
|
1019 |
+
def forward(
|
1020 |
+
self,
|
1021 |
+
pixel_values: Optional[torch.FloatTensor] = None,
|
1022 |
+
output_attentions: Optional[bool] = None,
|
1023 |
+
output_hidden_states: Optional[bool] = None,
|
1024 |
+
return_dict: Optional[bool] = None,
|
1025 |
+
) -> Union[Tuple, BaseModelOutputWithPooling]:
|
1026 |
+
r"""
|
1027 |
+
Returns:
|
1028 |
+
|
1029 |
+
"""
|
1030 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
1031 |
+
output_hidden_states = (
|
1032 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
1033 |
+
)
|
1034 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1035 |
+
|
1036 |
+
if pixel_values is None:
|
1037 |
+
raise ValueError("You have to specify pixel_values")
|
1038 |
+
|
1039 |
+
hidden_states = self.embeddings(pixel_values)
|
1040 |
+
hidden_states = self.pre_layrnorm(hidden_states)
|
1041 |
+
|
1042 |
+
encoder_outputs = self.encoder(
|
1043 |
+
inputs_embeds=hidden_states,
|
1044 |
+
output_attentions=output_attentions,
|
1045 |
+
output_hidden_states=output_hidden_states,
|
1046 |
+
return_dict=return_dict,
|
1047 |
+
)
|
1048 |
+
|
1049 |
+
last_hidden_state = encoder_outputs[0]
|
1050 |
+
pooled_output = last_hidden_state[:, 0, :]
|
1051 |
+
pooled_output = self.post_layernorm(pooled_output)
|
1052 |
+
|
1053 |
+
if not return_dict:
|
1054 |
+
return (last_hidden_state, pooled_output) + encoder_outputs[1:]
|
1055 |
+
|
1056 |
+
return BaseModelOutputWithPooling(
|
1057 |
+
last_hidden_state=last_hidden_state,
|
1058 |
+
pooler_output=pooled_output,
|
1059 |
+
hidden_states=encoder_outputs.hidden_states,
|
1060 |
+
attentions=encoder_outputs.attentions,
|
1061 |
+
)
|
1062 |
+
|
1063 |
+
|
1064 |
+
@add_start_docstrings(
|
1065 |
+
"""The vision model from CLIP without any head or projection on top.""",
|
1066 |
+
CLIP_START_DOCSTRING,
|
1067 |
+
)
|
1068 |
+
class CLIPVisionModel(CLIPPreTrainedModel):
|
1069 |
+
config_class = CLIPVisionConfig
|
1070 |
+
main_input_name = "pixel_values"
|
1071 |
+
_no_split_modules = ["CLIPEncoderLayer"]
|
1072 |
+
|
1073 |
+
def __init__(self, config: CLIPVisionConfig):
|
1074 |
+
super().__init__(config)
|
1075 |
+
self.vision_model = CLIPVisionTransformer(config)
|
1076 |
+
# Initialize weights and apply final processing
|
1077 |
+
self.post_init()
|
1078 |
+
|
1079 |
+
def get_input_embeddings(self) -> nn.Module:
|
1080 |
+
return self.vision_model.embeddings.patch_embedding
|
1081 |
+
|
1082 |
+
@add_start_docstrings_to_model_forward(CLIP_VISION_INPUTS_DOCSTRING)
|
1083 |
+
@replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=CLIPVisionConfig)
|
1084 |
+
def forward(
|
1085 |
+
self,
|
1086 |
+
pixel_values: Optional[torch.FloatTensor] = None,
|
1087 |
+
output_attentions: Optional[bool] = None,
|
1088 |
+
output_hidden_states: Optional[bool] = None,
|
1089 |
+
return_dict: Optional[bool] = None,
|
1090 |
+
) -> Union[Tuple, BaseModelOutputWithPooling]:
|
1091 |
+
r"""
|
1092 |
+
Returns:
|
1093 |
+
|
1094 |
+
Examples:
|
1095 |
+
|
1096 |
+
```python
|
1097 |
+
>>> from PIL import Image
|
1098 |
+
>>> import requests
|
1099 |
+
>>> from transformers import AutoProcessor, CLIPVisionModel
|
1100 |
+
|
1101 |
+
>>> model = CLIPVisionModel.from_pretrained("openai/clip-vit-base-patch32")
|
1102 |
+
>>> processor = AutoProcessor.from_pretrained("openai/clip-vit-base-patch32")
|
1103 |
+
|
1104 |
+
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
1105 |
+
>>> image = Image.open(requests.get(url, stream=True).raw)
|
1106 |
+
|
1107 |
+
>>> inputs = processor(images=image, return_tensors="pt")
|
1108 |
+
|
1109 |
+
>>> outputs = model(**inputs)
|
1110 |
+
>>> last_hidden_state = outputs.last_hidden_state
|
1111 |
+
>>> pooled_output = outputs.pooler_output # pooled CLS states
|
1112 |
+
```"""
|
1113 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1114 |
+
|
1115 |
+
return self.vision_model(
|
1116 |
+
pixel_values=pixel_values,
|
1117 |
+
output_attentions=output_attentions,
|
1118 |
+
output_hidden_states=output_hidden_states,
|
1119 |
+
return_dict=return_dict,
|
1120 |
+
)
|
1121 |
+
|
1122 |
+
|
1123 |
+
@add_start_docstrings(CLIP_START_DOCSTRING)
|
1124 |
+
class CLIPModel(CLIPPreTrainedModel):
|
1125 |
+
config_class = CLIPConfig
|
1126 |
+
_no_split_modules = ["CLIPTextEmbeddings", "CLIPEncoderLayer", "CLIPVisionEmbeddings"]
|
1127 |
+
|
1128 |
+
def __init__(self, config: CLIPConfig):
|
1129 |
+
super().__init__(config)
|
1130 |
+
|
1131 |
+
if not isinstance(config.text_config, CLIPTextConfig):
|
1132 |
+
raise TypeError(
|
1133 |
+
"config.text_config is expected to be of type CLIPTextConfig but is of type"
|
1134 |
+
f" {type(config.text_config)}."
|
1135 |
+
)
|
1136 |
+
|
1137 |
+
if not isinstance(config.vision_config, CLIPVisionConfig):
|
1138 |
+
raise TypeError(
|
1139 |
+
"config.vision_config is expected to be of type CLIPVisionConfig but is of type"
|
1140 |
+
f" {type(config.vision_config)}."
|
1141 |
+
)
|
1142 |
+
|
1143 |
+
text_config = config.text_config
|
1144 |
+
vision_config = config.vision_config
|
1145 |
+
|
1146 |
+
self.projection_dim = config.projection_dim
|
1147 |
+
self.text_embed_dim = text_config.hidden_size
|
1148 |
+
self.vision_embed_dim = vision_config.hidden_size
|
1149 |
+
|
1150 |
+
text_model = CLIPTextModel._from_config(text_config, attn_implementation=config._attn_implementation)
|
1151 |
+
self.text_model = text_model.text_model
|
1152 |
+
|
1153 |
+
vision_model = CLIPVisionModel._from_config(vision_config, attn_implementation=config._attn_implementation)
|
1154 |
+
self.vision_model = vision_model.vision_model
|
1155 |
+
|
1156 |
+
self.visual_projection = nn.Linear(self.vision_embed_dim, self.projection_dim, bias=False)
|
1157 |
+
self.text_projection = nn.Linear(self.text_embed_dim, self.projection_dim, bias=False)
|
1158 |
+
self.logit_scale = nn.Parameter(torch.tensor(self.config.logit_scale_init_value))
|
1159 |
+
|
1160 |
+
# Initialize weights and apply final processing
|
1161 |
+
self.post_init()
|
1162 |
+
|
1163 |
+
def set_processor(self, model_name):
|
1164 |
+
self.processor = CLIPProcessor.from_pretrained(model_name)
|
1165 |
+
|
1166 |
+
@add_start_docstrings_to_model_forward(CLIP_TEXT_INPUTS_DOCSTRING)
|
1167 |
+
def get_text_features(
|
1168 |
+
self,
|
1169 |
+
input_ids: Optional[torch.Tensor] = None,
|
1170 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1171 |
+
position_ids: Optional[torch.Tensor] = None,
|
1172 |
+
output_attentions: Optional[bool] = None,
|
1173 |
+
output_hidden_states: Optional[bool] = None,
|
1174 |
+
return_dict: Optional[bool] = None,
|
1175 |
+
) -> torch.FloatTensor:
|
1176 |
+
r"""
|
1177 |
+
Returns:
|
1178 |
+
text_features (`torch.FloatTensor` of shape `(batch_size, output_dim`): The text embeddings obtained by
|
1179 |
+
applying the projection layer to the pooled output of [`CLIPTextModel`].
|
1180 |
+
|
1181 |
+
Examples:
|
1182 |
+
|
1183 |
+
```python
|
1184 |
+
>>> from transformers import AutoTokenizer, CLIPModel
|
1185 |
+
|
1186 |
+
>>> model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32")
|
1187 |
+
>>> tokenizer = AutoTokenizer.from_pretrained("openai/clip-vit-base-patch32")
|
1188 |
+
|
1189 |
+
>>> inputs = tokenizer(["a photo of a cat", "a photo of a dog"], padding=True, return_tensors="pt")
|
1190 |
+
>>> text_features = model.get_text_features(**inputs)
|
1191 |
+
```"""
|
1192 |
+
# Use CLIP model's config for some fields (if specified) instead of those of vision & text components.
|
1193 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
1194 |
+
output_hidden_states = (
|
1195 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
1196 |
+
)
|
1197 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1198 |
+
|
1199 |
+
text_outputs = self.text_model(
|
1200 |
+
input_ids=input_ids,
|
1201 |
+
attention_mask=attention_mask,
|
1202 |
+
position_ids=position_ids,
|
1203 |
+
output_attentions=output_attentions,
|
1204 |
+
output_hidden_states=output_hidden_states,
|
1205 |
+
return_dict=return_dict,
|
1206 |
+
)
|
1207 |
+
|
1208 |
+
pooled_output = text_outputs[1]
|
1209 |
+
text_features = self.text_projection(pooled_output)
|
1210 |
+
|
1211 |
+
return text_features
|
1212 |
+
|
1213 |
+
@add_start_docstrings_to_model_forward(CLIP_VISION_INPUTS_DOCSTRING)
|
1214 |
+
def get_image_features(
|
1215 |
+
self,
|
1216 |
+
pixel_values: Optional[torch.FloatTensor] = None,
|
1217 |
+
output_attentions: Optional[bool] = None,
|
1218 |
+
output_hidden_states: Optional[bool] = None,
|
1219 |
+
return_dict: Optional[bool] = None,
|
1220 |
+
) -> torch.FloatTensor:
|
1221 |
+
r"""
|
1222 |
+
Returns:
|
1223 |
+
image_features (`torch.FloatTensor` of shape `(batch_size, output_dim`): The image embeddings obtained by
|
1224 |
+
applying the projection layer to the pooled output of [`CLIPVisionModel`].
|
1225 |
+
|
1226 |
+
Examples:
|
1227 |
+
|
1228 |
+
```python
|
1229 |
+
>>> from PIL import Image
|
1230 |
+
>>> import requests
|
1231 |
+
>>> from transformers import AutoProcessor, CLIPModel
|
1232 |
+
|
1233 |
+
>>> model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32")
|
1234 |
+
>>> processor = AutoProcessor.from_pretrained("openai/clip-vit-base-patch32")
|
1235 |
+
|
1236 |
+
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
1237 |
+
>>> image = Image.open(requests.get(url, stream=True).raw)
|
1238 |
+
|
1239 |
+
>>> inputs = processor(images=image, return_tensors="pt")
|
1240 |
+
|
1241 |
+
>>> image_features = model.get_image_features(**inputs)
|
1242 |
+
```"""
|
1243 |
+
# Use CLIP model's config for some fields (if specified) instead of those of vision & text components.
|
1244 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
1245 |
+
output_hidden_states = (
|
1246 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
1247 |
+
)
|
1248 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1249 |
+
|
1250 |
+
vision_outputs = self.vision_model(
|
1251 |
+
pixel_values=pixel_values,
|
1252 |
+
output_attentions=output_attentions,
|
1253 |
+
output_hidden_states=output_hidden_states,
|
1254 |
+
return_dict=return_dict,
|
1255 |
+
)
|
1256 |
+
|
1257 |
+
pooled_output = vision_outputs[1] # pooled_output
|
1258 |
+
image_features = self.visual_projection(pooled_output)
|
1259 |
+
|
1260 |
+
return image_features
|
1261 |
+
|
1262 |
+
|
1263 |
+
def encode_image(self, images):
|
1264 |
+
embeddings = self.get_image_features(images)
|
1265 |
+
embeddings = torch.nn.functional.normalize(embeddings, dim=-1)
|
1266 |
+
return embeddings
|
1267 |
+
|
1268 |
+
def encode_text(self, text):
|
1269 |
+
embeddings = self.get_text_features(**text)
|
1270 |
+
embeddings = torch.nn.functional.normalize(embeddings, dim=-1)
|
1271 |
+
return embeddings
|
1272 |
+
|
1273 |
+
def encode_multimodal(self, images, text):
|
1274 |
+
text_embeddings = self.get_text_features(**text)
|
1275 |
+
image_embeddings = self.get_image_features(images)
|
1276 |
+
|
1277 |
+
embeddings = text_embeddings + image_embeddings
|
1278 |
+
embeddings = torch.nn.functional.normalize(embeddings, dim=-1)
|
1279 |
+
|
1280 |
+
return embeddings.contiguous()
|
1281 |
+
|
1282 |
+
def data_process(self, images=None, text=None):
|
1283 |
+
if images is None and text is not None:
|
1284 |
+
text = self.processor(text=text, return_tensors="pt", padding=True).to(self.device)
|
1285 |
+
|
1286 |
+
return images, text, "text"
|
1287 |
+
elif images is not None and text is None:
|
1288 |
+
if isinstance(images, str):
|
1289 |
+
images = Image.open(images).convert("RGB")
|
1290 |
+
elif isinstance(images, list):
|
1291 |
+
images = [Image.open(image).convert("RGB") for image in images]
|
1292 |
+
images = self.processor(images=images, return_tensors="pt").to(self.device)
|
1293 |
+
images = images["pixel_values"]
|
1294 |
+
return images, text, "images"
|
1295 |
+
elif images is not None and text is not None:
|
1296 |
+
assert type(images) == type(text), "images and text must be the same type: list or str"
|
1297 |
+
if isinstance(images, str):
|
1298 |
+
images = Image.open(images).convert("RGB")
|
1299 |
+
elif isinstance(images, list):
|
1300 |
+
assert len(images) == len(text), "images and text must be lists of the same length when use list"
|
1301 |
+
images = [Image.open(image).convert("RGB") for image in images]
|
1302 |
+
images = self.processor(images=images, return_tensors="pt").to(self.device)
|
1303 |
+
images = images["pixel_values"]
|
1304 |
+
text = self.processor(text=text, return_tensors="pt", padding=True).to(self.device)
|
1305 |
+
return images, text, "multimodal"
|
1306 |
+
else:
|
1307 |
+
raise ValueError("images and text cannot both be None")
|
1308 |
+
|
1309 |
+
def encode(self, images=None, text=None):
|
1310 |
+
images, text, data_type = self.data_process(images, text)
|
1311 |
+
if data_type == "images":
|
1312 |
+
return self.encode_image(images)
|
1313 |
+
elif data_type == "text":
|
1314 |
+
return self.encode_text(text)
|
1315 |
+
elif data_type == "multimodal":
|
1316 |
+
return self.encode_multimodal(images, text)
|
1317 |
+
|
1318 |
+
|
1319 |
+
@add_start_docstrings_to_model_forward(CLIP_INPUTS_DOCSTRING)
|
1320 |
+
@replace_return_docstrings(output_type=CLIPOutput, config_class=CLIPConfig)
|
1321 |
+
def forward(
|
1322 |
+
self,
|
1323 |
+
input_ids: Optional[torch.LongTensor] = None,
|
1324 |
+
pixel_values: Optional[torch.FloatTensor] = None,
|
1325 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1326 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1327 |
+
return_loss: Optional[bool] = None,
|
1328 |
+
output_attentions: Optional[bool] = None,
|
1329 |
+
output_hidden_states: Optional[bool] = None,
|
1330 |
+
return_dict: Optional[bool] = None,
|
1331 |
+
) -> Union[Tuple, CLIPOutput]:
|
1332 |
+
r"""
|
1333 |
+
Returns:
|
1334 |
+
|
1335 |
+
Examples:
|
1336 |
+
|
1337 |
+
```python
|
1338 |
+
>>> from PIL import Image
|
1339 |
+
>>> import requests
|
1340 |
+
>>> from transformers import AutoProcessor, CLIPModel
|
1341 |
+
|
1342 |
+
>>> model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32")
|
1343 |
+
>>> processor = AutoProcessor.from_pretrained("openai/clip-vit-base-patch32")
|
1344 |
+
|
1345 |
+
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
1346 |
+
>>> image = Image.open(requests.get(url, stream=True).raw)
|
1347 |
+
|
1348 |
+
>>> inputs = processor(
|
1349 |
+
... text=["a photo of a cat", "a photo of a dog"], images=image, return_tensors="pt", padding=True
|
1350 |
+
... )
|
1351 |
+
|
1352 |
+
>>> outputs = model(**inputs)
|
1353 |
+
>>> logits_per_image = outputs.logits_per_image # this is the image-text similarity score
|
1354 |
+
>>> probs = logits_per_image.softmax(dim=1) # we can take the softmax to get the label probabilities
|
1355 |
+
```"""
|
1356 |
+
# Use CLIP model's config for some fields (if specified) instead of those of vision & text components.
|
1357 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
1358 |
+
output_hidden_states = (
|
1359 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
1360 |
+
)
|
1361 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1362 |
+
|
1363 |
+
vision_outputs = self.vision_model(
|
1364 |
+
pixel_values=pixel_values,
|
1365 |
+
output_attentions=output_attentions,
|
1366 |
+
output_hidden_states=output_hidden_states,
|
1367 |
+
return_dict=return_dict,
|
1368 |
+
)
|
1369 |
+
|
1370 |
+
text_outputs = self.text_model(
|
1371 |
+
input_ids=input_ids,
|
1372 |
+
attention_mask=attention_mask,
|
1373 |
+
position_ids=position_ids,
|
1374 |
+
output_attentions=output_attentions,
|
1375 |
+
output_hidden_states=output_hidden_states,
|
1376 |
+
return_dict=return_dict,
|
1377 |
+
)
|
1378 |
+
|
1379 |
+
image_embeds = vision_outputs[1]
|
1380 |
+
image_embeds = self.visual_projection(image_embeds)
|
1381 |
+
|
1382 |
+
text_embeds = text_outputs[1]
|
1383 |
+
text_embeds = self.text_projection(text_embeds)
|
1384 |
+
|
1385 |
+
# normalized features
|
1386 |
+
image_embeds = image_embeds / _get_vector_norm(image_embeds)
|
1387 |
+
text_embeds = text_embeds / _get_vector_norm(text_embeds)
|
1388 |
+
|
1389 |
+
# cosine similarity as logits
|
1390 |
+
logit_scale = self.logit_scale.exp()
|
1391 |
+
logits_per_text = torch.matmul(text_embeds, image_embeds.t().to(text_embeds.device)) * logit_scale.to(
|
1392 |
+
text_embeds.device
|
1393 |
+
)
|
1394 |
+
logits_per_image = logits_per_text.t()
|
1395 |
+
|
1396 |
+
loss = None
|
1397 |
+
if return_loss:
|
1398 |
+
loss = clip_loss(logits_per_text)
|
1399 |
+
|
1400 |
+
if not return_dict:
|
1401 |
+
output = (logits_per_image, logits_per_text, text_embeds, image_embeds, text_outputs, vision_outputs)
|
1402 |
+
return ((loss,) + output) if loss is not None else output
|
1403 |
+
|
1404 |
+
return CLIPOutput(
|
1405 |
+
loss=loss,
|
1406 |
+
logits_per_image=logits_per_image,
|
1407 |
+
logits_per_text=logits_per_text,
|
1408 |
+
text_embeds=text_embeds,
|
1409 |
+
image_embeds=image_embeds,
|
1410 |
+
text_model_output=text_outputs,
|
1411 |
+
vision_model_output=vision_outputs,
|
1412 |
+
)
|
1413 |
+
|
1414 |
+
|
1415 |
+
@add_start_docstrings(
|
1416 |
+
"""
|
1417 |
+
CLIP Text Model with a projection layer on top (a linear layer on top of the pooled output).
|
1418 |
+
""",
|
1419 |
+
CLIP_START_DOCSTRING,
|
1420 |
+
)
|
1421 |
+
class CLIPTextModelWithProjection(CLIPPreTrainedModel):
|
1422 |
+
config_class = CLIPTextConfig
|
1423 |
+
|
1424 |
+
_no_split_modules = ["CLIPTextEmbeddings", "CLIPEncoderLayer"]
|
1425 |
+
|
1426 |
+
def __init__(self, config: CLIPTextConfig):
|
1427 |
+
super().__init__(config)
|
1428 |
+
|
1429 |
+
text_model = CLIPTextModel._from_config(config, attn_implementation=config._attn_implementation)
|
1430 |
+
self.text_model = text_model.text_model
|
1431 |
+
|
1432 |
+
self.text_projection = nn.Linear(config.hidden_size, config.projection_dim, bias=False)
|
1433 |
+
|
1434 |
+
# Initialize weights and apply final processing
|
1435 |
+
self.post_init()
|
1436 |
+
|
1437 |
+
def get_input_embeddings(self) -> nn.Module:
|
1438 |
+
return self.text_model.embeddings.token_embedding
|
1439 |
+
|
1440 |
+
def set_input_embeddings(self, value):
|
1441 |
+
self.text_model.embeddings.token_embedding = value
|
1442 |
+
|
1443 |
+
@add_start_docstrings_to_model_forward(CLIP_TEXT_INPUTS_DOCSTRING)
|
1444 |
+
@replace_return_docstrings(output_type=CLIPTextModelOutput, config_class=CLIPTextConfig)
|
1445 |
+
def forward(
|
1446 |
+
self,
|
1447 |
+
input_ids: Optional[torch.Tensor] = None,
|
1448 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1449 |
+
position_ids: Optional[torch.Tensor] = None,
|
1450 |
+
output_attentions: Optional[bool] = None,
|
1451 |
+
output_hidden_states: Optional[bool] = None,
|
1452 |
+
return_dict: Optional[bool] = None,
|
1453 |
+
) -> Union[Tuple, CLIPTextModelOutput]:
|
1454 |
+
r"""
|
1455 |
+
Returns:
|
1456 |
+
|
1457 |
+
Examples:
|
1458 |
+
|
1459 |
+
```python
|
1460 |
+
>>> from transformers import AutoTokenizer, CLIPTextModelWithProjection
|
1461 |
+
|
1462 |
+
>>> model = CLIPTextModelWithProjection.from_pretrained("openai/clip-vit-base-patch32")
|
1463 |
+
>>> tokenizer = AutoTokenizer.from_pretrained("openai/clip-vit-base-patch32")
|
1464 |
+
|
1465 |
+
>>> inputs = tokenizer(["a photo of a cat", "a photo of a dog"], padding=True, return_tensors="pt")
|
1466 |
+
|
1467 |
+
>>> outputs = model(**inputs)
|
1468 |
+
>>> text_embeds = outputs.text_embeds
|
1469 |
+
```"""
|
1470 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1471 |
+
|
1472 |
+
text_outputs = self.text_model(
|
1473 |
+
input_ids=input_ids,
|
1474 |
+
attention_mask=attention_mask,
|
1475 |
+
position_ids=position_ids,
|
1476 |
+
output_attentions=output_attentions,
|
1477 |
+
output_hidden_states=output_hidden_states,
|
1478 |
+
return_dict=return_dict,
|
1479 |
+
)
|
1480 |
+
|
1481 |
+
pooled_output = text_outputs[1]
|
1482 |
+
|
1483 |
+
text_embeds = self.text_projection(pooled_output)
|
1484 |
+
|
1485 |
+
if not return_dict:
|
1486 |
+
outputs = (text_embeds, text_outputs[0]) + text_outputs[2:]
|
1487 |
+
return tuple(output for output in outputs if output is not None)
|
1488 |
+
|
1489 |
+
return CLIPTextModelOutput(
|
1490 |
+
text_embeds=text_embeds,
|
1491 |
+
last_hidden_state=text_outputs.last_hidden_state,
|
1492 |
+
hidden_states=text_outputs.hidden_states,
|
1493 |
+
attentions=text_outputs.attentions,
|
1494 |
+
)
|
1495 |
+
|
1496 |
+
|
1497 |
+
@add_start_docstrings(
|
1498 |
+
"""
|
1499 |
+
CLIP Vision Model with a projection layer on top (a linear layer on top of the pooled output).
|
1500 |
+
""",
|
1501 |
+
CLIP_START_DOCSTRING,
|
1502 |
+
)
|
1503 |
+
class CLIPVisionModelWithProjection(CLIPPreTrainedModel):
|
1504 |
+
config_class = CLIPVisionConfig
|
1505 |
+
main_input_name = "pixel_values"
|
1506 |
+
|
1507 |
+
def __init__(self, config: CLIPVisionConfig):
|
1508 |
+
super().__init__(config)
|
1509 |
+
|
1510 |
+
vision_model = CLIPVisionModel._from_config(config, attn_implementation=config._attn_implementation)
|
1511 |
+
self.vision_model = vision_model.vision_model
|
1512 |
+
|
1513 |
+
self.visual_projection = nn.Linear(config.hidden_size, config.projection_dim, bias=False)
|
1514 |
+
|
1515 |
+
# Initialize weights and apply final processing
|
1516 |
+
self.post_init()
|
1517 |
+
|
1518 |
+
def get_input_embeddings(self) -> nn.Module:
|
1519 |
+
return self.vision_model.embeddings.patch_embedding
|
1520 |
+
|
1521 |
+
@add_start_docstrings_to_model_forward(CLIP_VISION_INPUTS_DOCSTRING)
|
1522 |
+
@replace_return_docstrings(output_type=CLIPVisionModelOutput, config_class=CLIPVisionConfig)
|
1523 |
+
def forward(
|
1524 |
+
self,
|
1525 |
+
pixel_values: Optional[torch.FloatTensor] = None,
|
1526 |
+
output_attentions: Optional[bool] = None,
|
1527 |
+
output_hidden_states: Optional[bool] = None,
|
1528 |
+
return_dict: Optional[bool] = None,
|
1529 |
+
) -> Union[Tuple, CLIPVisionModelOutput]:
|
1530 |
+
r"""
|
1531 |
+
Returns:
|
1532 |
+
|
1533 |
+
Examples:
|
1534 |
+
|
1535 |
+
```python
|
1536 |
+
>>> from PIL import Image
|
1537 |
+
>>> import requests
|
1538 |
+
>>> from transformers import AutoProcessor, CLIPVisionModelWithProjection
|
1539 |
+
|
1540 |
+
>>> model = CLIPVisionModelWithProjection.from_pretrained("openai/clip-vit-base-patch32")
|
1541 |
+
>>> processor = AutoProcessor.from_pretrained("openai/clip-vit-base-patch32")
|
1542 |
+
|
1543 |
+
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
1544 |
+
>>> image = Image.open(requests.get(url, stream=True).raw)
|
1545 |
+
|
1546 |
+
>>> inputs = processor(images=image, return_tensors="pt")
|
1547 |
+
|
1548 |
+
>>> outputs = model(**inputs)
|
1549 |
+
>>> image_embeds = outputs.image_embeds
|
1550 |
+
```"""
|
1551 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1552 |
+
|
1553 |
+
vision_outputs = self.vision_model(
|
1554 |
+
pixel_values=pixel_values,
|
1555 |
+
output_attentions=output_attentions,
|
1556 |
+
output_hidden_states=output_hidden_states,
|
1557 |
+
return_dict=return_dict,
|
1558 |
+
)
|
1559 |
+
|
1560 |
+
pooled_output = vision_outputs[1] # pooled_output
|
1561 |
+
|
1562 |
+
image_embeds = self.visual_projection(pooled_output)
|
1563 |
+
|
1564 |
+
if not return_dict:
|
1565 |
+
outputs = (image_embeds, vision_outputs[0]) + vision_outputs[2:]
|
1566 |
+
return tuple(output for output in outputs if output is not None)
|
1567 |
+
|
1568 |
+
return CLIPVisionModelOutput(
|
1569 |
+
image_embeds=image_embeds,
|
1570 |
+
last_hidden_state=vision_outputs.last_hidden_state,
|
1571 |
+
hidden_states=vision_outputs.hidden_states,
|
1572 |
+
attentions=vision_outputs.attentions,
|
1573 |
+
)
|
1574 |
+
|
1575 |
+
|
1576 |
+
@add_start_docstrings(
|
1577 |
+
"""
|
1578 |
+
CLIP vision encoder with an image classification head on top (a linear layer on top of the pooled final hidden states of
|
1579 |
+
the patch tokens) e.g. for ImageNet.
|
1580 |
+
""",
|
1581 |
+
CLIP_START_DOCSTRING,
|
1582 |
+
)
|
1583 |
+
class CLIPForImageClassification(CLIPPreTrainedModel):
|
1584 |
+
main_input_name = "pixel_values"
|
1585 |
+
|
1586 |
+
def __init__(self, config: CLIPConfig) -> None:
|
1587 |
+
super().__init__(config)
|
1588 |
+
|
1589 |
+
self.num_labels = config.num_labels
|
1590 |
+
vision_model = CLIPVisionModel._from_config(
|
1591 |
+
config.vision_config, attn_implementation=config._attn_implementation
|
1592 |
+
)
|
1593 |
+
self.vision_model = vision_model.vision_model
|
1594 |
+
|
1595 |
+
# Classifier head
|
1596 |
+
self.classifier = (
|
1597 |
+
nn.Linear(config.vision_config.hidden_size, config.num_labels) if config.num_labels > 0 else nn.Identity()
|
1598 |
+
)
|
1599 |
+
|
1600 |
+
# Initialize weights and apply final processing
|
1601 |
+
self.post_init()
|
1602 |
+
|
1603 |
+
@add_start_docstrings_to_model_forward(CLIP_INPUTS_DOCSTRING)
|
1604 |
+
@add_code_sample_docstrings(
|
1605 |
+
checkpoint=_IMAGE_CLASS_CHECKPOINT,
|
1606 |
+
output_type=ImageClassifierOutput,
|
1607 |
+
config_class=_CONFIG_FOR_DOC,
|
1608 |
+
expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT,
|
1609 |
+
)
|
1610 |
+
def forward(
|
1611 |
+
self,
|
1612 |
+
pixel_values: Optional[torch.Tensor] = None,
|
1613 |
+
labels: Optional[torch.Tensor] = None,
|
1614 |
+
output_attentions: Optional[bool] = None,
|
1615 |
+
output_hidden_states: Optional[bool] = None,
|
1616 |
+
return_dict: Optional[bool] = None,
|
1617 |
+
) -> Union[tuple, ImageClassifierOutput]:
|
1618 |
+
r"""
|
1619 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1620 |
+
Labels for computing the image classification/regression loss. Indices should be in `[0, ...,
|
1621 |
+
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
1622 |
+
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
1623 |
+
"""
|
1624 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
1625 |
+
output_hidden_states = (
|
1626 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
1627 |
+
)
|
1628 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1629 |
+
|
1630 |
+
outputs = self.vision_model(
|
1631 |
+
pixel_values,
|
1632 |
+
output_attentions=output_attentions,
|
1633 |
+
output_hidden_states=output_hidden_states,
|
1634 |
+
return_dict=return_dict,
|
1635 |
+
)
|
1636 |
+
|
1637 |
+
sequence_output = outputs[0]
|
1638 |
+
|
1639 |
+
# average pool the patch tokens
|
1640 |
+
sequence_output = torch.mean(sequence_output[:, 1:, :], dim=1)
|
1641 |
+
# apply classifier
|
1642 |
+
logits = self.classifier(sequence_output)
|
1643 |
+
|
1644 |
+
loss = None
|
1645 |
+
if labels is not None:
|
1646 |
+
# move labels to correct device to enable model parallelism
|
1647 |
+
labels = labels.to(logits.device)
|
1648 |
+
if self.config.problem_type is None:
|
1649 |
+
if self.num_labels == 1:
|
1650 |
+
self.config.problem_type = "regression"
|
1651 |
+
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
|
1652 |
+
self.config.problem_type = "single_label_classification"
|
1653 |
+
else:
|
1654 |
+
self.config.problem_type = "multi_label_classification"
|
1655 |
+
|
1656 |
+
if self.config.problem_type == "regression":
|
1657 |
+
loss_fct = MSELoss()
|
1658 |
+
if self.num_labels == 1:
|
1659 |
+
loss = loss_fct(logits.squeeze(), labels.squeeze())
|
1660 |
+
else:
|
1661 |
+
loss = loss_fct(logits, labels)
|
1662 |
+
elif self.config.problem_type == "single_label_classification":
|
1663 |
+
loss_fct = CrossEntropyLoss()
|
1664 |
+
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
1665 |
+
elif self.config.problem_type == "multi_label_classification":
|
1666 |
+
loss_fct = BCEWithLogitsLoss()
|
1667 |
+
loss = loss_fct(logits, labels)
|
1668 |
+
|
1669 |
+
if not return_dict:
|
1670 |
+
output = (logits,) + outputs[2:]
|
1671 |
+
return ((loss,) + output) if loss is not None else output
|
1672 |
+
|
1673 |
+
return ImageClassifierOutput(
|
1674 |
+
loss=loss,
|
1675 |
+
logits=logits,
|
1676 |
+
hidden_states=outputs.hidden_states,
|
1677 |
+
attentions=outputs.attentions,
|
1678 |
+
)
|
preprocessor_config.json
ADDED
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"crop_size": 224,
|
3 |
+
"do_center_crop": true,
|
4 |
+
"do_normalize": true,
|
5 |
+
"do_resize": true,
|
6 |
+
"feature_extractor_type": "CLIPFeatureExtractor",
|
7 |
+
"image_mean": [
|
8 |
+
0.48145466,
|
9 |
+
0.4578275,
|
10 |
+
0.40821073
|
11 |
+
],
|
12 |
+
"image_std": [
|
13 |
+
0.26862954,
|
14 |
+
0.26130258,
|
15 |
+
0.27577711
|
16 |
+
],
|
17 |
+
"resample": 3,
|
18 |
+
"size": 224
|
19 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"bos_token": {"content": "<|startoftext|>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true}, "eos_token": {"content": "<|endoftext|>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true}, "unk_token": {"content": "<|endoftext|>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true}, "pad_token": "<|endoftext|>"}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"unk_token": {
|
3 |
+
"content": "<|endoftext|>",
|
4 |
+
"single_word": false,
|
5 |
+
"lstrip": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"normalized": true,
|
8 |
+
"__type": "AddedToken"
|
9 |
+
},
|
10 |
+
"bos_token": {
|
11 |
+
"content": "<|startoftext|>",
|
12 |
+
"single_word": false,
|
13 |
+
"lstrip": false,
|
14 |
+
"rstrip": false,
|
15 |
+
"normalized": true,
|
16 |
+
"__type": "AddedToken"
|
17 |
+
},
|
18 |
+
"eos_token": {
|
19 |
+
"content": "<|endoftext|>",
|
20 |
+
"single_word": false,
|
21 |
+
"lstrip": false,
|
22 |
+
"rstrip": false,
|
23 |
+
"normalized": true,
|
24 |
+
"__type": "AddedToken"
|
25 |
+
},
|
26 |
+
"pad_token": "<|endoftext|>",
|
27 |
+
"add_prefix_space": false,
|
28 |
+
"errors": "replace",
|
29 |
+
"do_lower_case": true,
|
30 |
+
"name_or_path": "openai/clip-vit-base-patch32",
|
31 |
+
"model_max_length": 77,
|
32 |
+
"special_tokens_map_file": "./special_tokens_map.json",
|
33 |
+
"tokenizer_class": "CLIPTokenizer"
|
34 |
+
}
|
vocab.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|