Initial commit
Browse files- README.md +1 -1
- a2c-PandaReachDense-v2.zip +2 -2
- a2c-PandaReachDense-v2/data +13 -13
- a2c-PandaReachDense-v2/policy.optimizer.pth +1 -1
- a2c-PandaReachDense-v2/policy.pth +1 -1
- config.json +1 -1
- replay.mp4 +0 -0
- results.json +1 -1
- vec_normalize.pkl +1 -1
README.md
CHANGED
@@ -16,7 +16,7 @@ model-index:
|
|
16 |
type: PandaReachDense-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
-
value: -
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
|
|
16 |
type: PandaReachDense-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
+
value: -3.03 +/- 0.58
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
a2c-PandaReachDense-v2.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:af9585c0a6549f090a9f9a01b9f63e18d999952d5d0e3685adf1693699dde332
|
3 |
+
size 108024
|
a2c-PandaReachDense-v2/data
CHANGED
@@ -4,9 +4,9 @@
|
|
4 |
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
-
"__init__": "<function MultiInputActorCriticPolicy.__init__ at
|
8 |
"__abstractmethods__": "frozenset()",
|
9 |
-
"_abc_impl": "<_abc_data object at
|
10 |
},
|
11 |
"verbose": 1,
|
12 |
"policy_kwargs": {
|
@@ -41,12 +41,12 @@
|
|
41 |
"_np_random": null
|
42 |
},
|
43 |
"n_envs": 4,
|
44 |
-
"num_timesteps":
|
45 |
-
"_total_timesteps":
|
46 |
"_num_timesteps_at_start": 0,
|
47 |
"seed": null,
|
48 |
"action_noise": null,
|
49 |
-
"start_time":
|
50 |
"learning_rate": 0.0007,
|
51 |
"tensorboard_log": null,
|
52 |
"lr_schedule": {
|
@@ -55,10 +55,10 @@
|
|
55 |
},
|
56 |
"_last_obs": {
|
57 |
":type:": "<class 'collections.OrderedDict'>",
|
58 |
-
":serialized:": "
|
59 |
-
"achieved_goal": "[[0.
|
60 |
-
"desired_goal": "[[-
|
61 |
-
"observation": "[[
|
62 |
},
|
63 |
"_last_episode_starts": {
|
64 |
":type:": "<class 'numpy.ndarray'>",
|
@@ -66,9 +66,9 @@
|
|
66 |
},
|
67 |
"_last_original_obs": {
|
68 |
":type:": "<class 'collections.OrderedDict'>",
|
69 |
-
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////
|
70 |
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
71 |
-
"desired_goal": "[[
|
72 |
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
73 |
},
|
74 |
"_episode_num": 0,
|
@@ -77,13 +77,13 @@
|
|
77 |
"_current_progress_remaining": 0.0,
|
78 |
"ep_info_buffer": {
|
79 |
":type:": "<class 'collections.deque'>",
|
80 |
-
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////
|
81 |
},
|
82 |
"ep_success_buffer": {
|
83 |
":type:": "<class 'collections.deque'>",
|
84 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
85 |
},
|
86 |
-
"_n_updates":
|
87 |
"n_steps": 5,
|
88 |
"gamma": 0.99,
|
89 |
"gae_lambda": 1.0,
|
|
|
4 |
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f54ef7ad430>",
|
8 |
"__abstractmethods__": "frozenset()",
|
9 |
+
"_abc_impl": "<_abc_data object at 0x7f54ef7a1f00>"
|
10 |
},
|
11 |
"verbose": 1,
|
12 |
"policy_kwargs": {
|
|
|
41 |
"_np_random": null
|
42 |
},
|
43 |
"n_envs": 4,
|
44 |
+
"num_timesteps": 2000000,
|
45 |
+
"_total_timesteps": 2000000,
|
46 |
"_num_timesteps_at_start": 0,
|
47 |
"seed": null,
|
48 |
"action_noise": null,
|
49 |
+
"start_time": 1675017031273832812,
|
50 |
"learning_rate": 0.0007,
|
51 |
"tensorboard_log": null,
|
52 |
"lr_schedule": {
|
|
|
55 |
},
|
56 |
"_last_obs": {
|
57 |
":type:": "<class 'collections.OrderedDict'>",
|
58 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAaI7cPqBfm7yvQhE/aI7cPqBfm7yvQhE/aI7cPqBfm7yvQhE/aI7cPqBfm7yvQhE/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA3cyvvxIJHj/6BMs+s2auv03vsT8m95O/bu+lP7oMir8A5ak/DIMkP4htJL+oHSG/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAABojtw+oF+bvK9CET8ZqSw8SBNqu3W1G7tojtw+oF+bvK9CET8ZqSw8SBNqu3W1G7tojtw+oF+bvK9CET8ZqSw8SBNqu3W1G7tojtw+oF+bvK9CET8ZqSw8SBNqu3W1G7uUaA5LBEsGhpRoEnSUUpR1Lg==",
|
59 |
+
"achieved_goal": "[[ 0.43077397 -0.0189665 0.56742376]\n [ 0.43077397 -0.0189665 0.56742376]\n [ 0.43077397 -0.0189665 0.56742376]\n [ 0.43077397 -0.0189665 0.56742376]]",
|
60 |
+
"desired_goal": "[[-1.3734394 0.6173259 0.39652234]\n [-1.3625091 1.3901154 -1.1559799 ]\n [ 1.2963693 -1.0785134 1.327301 ]\n [ 0.6426246 -0.6422963 -0.62935877]]",
|
61 |
+
"observation": "[[ 0.43077397 -0.0189665 0.56742376 0.01053836 -0.00357171 -0.00237593]\n [ 0.43077397 -0.0189665 0.56742376 0.01053836 -0.00357171 -0.00237593]\n [ 0.43077397 -0.0189665 0.56742376 0.01053836 -0.00357171 -0.00237593]\n [ 0.43077397 -0.0189665 0.56742376 0.01053836 -0.00357171 -0.00237593]]"
|
62 |
},
|
63 |
"_last_episode_starts": {
|
64 |
":type:": "<class 'numpy.ndarray'>",
|
|
|
66 |
},
|
67 |
"_last_original_obs": {
|
68 |
":type:": "<class 'collections.OrderedDict'>",
|
69 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA8ZoQPiCwpjwPoWo+wEDwvKFJxz2pFtk9LjjKPUwPCj4kz7c9J9HnPFBZXT0FrWE+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
|
70 |
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
71 |
+
"desired_goal": "[[ 0.14121605 0.02034765 0.22913001]\n [-0.02932775 0.0973084 0.10600025]\n [ 0.09873997 0.13482398 0.08975056]\n [ 0.02829797 0.05404025 0.22038658]]",
|
72 |
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
73 |
},
|
74 |
"_episode_num": 0,
|
|
|
77 |
"_current_progress_remaining": 0.0,
|
78 |
"ep_info_buffer": {
|
79 |
":type:": "<class 'collections.deque'>",
|
80 |
+
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIv0nToGjeC8CUhpRSlIwBbJRLMowBdJRHQLNOI24uscR1fZQoaAZoCWgPQwhEGapiKh0FwJSGlFKUaBVLMmgWR0CzTgZV4oqkdX2UKGgGaAloD0MIW5nwS/08BMCUhpRSlGgVSzJoFkdAs03pH6MzdnV9lChoBmgJaA9DCMnMBS6PdRLAlIaUUpRoFUsyaBZHQLNNzFkQPI51fZQoaAZoCWgPQwjElbN3RnsFwJSGlFKUaBVLMmgWR0CzTpV0YCQtdX2UKGgGaAloD0MIPlsHB3tzC8CUhpRSlGgVSzJoFkdAs054k7fYSXV9lChoBmgJaA9DCEBPAwZJ/xDAlIaUUpRoFUsyaBZHQLNOW1wYLst1fZQoaAZoCWgPQwgiMxe4PPYIwJSGlFKUaBVLMmgWR0CzTj5tWMjvdX2UKGgGaAloD0MI7ib4pumzA8CUhpRSlGgVSzJoFkdAs08DBrN4aHV9lChoBmgJaA9DCCv2l92TRwXAlIaUUpRoFUsyaBZHQLNO5fzBhx51fZQoaAZoCWgPQwiLVBhbCLILwJSGlFKUaBVLMmgWR0CzTsjvmYBvdX2UKGgGaAloD0MII6DCEaSyD8CUhpRSlGgVSzJoFkdAs06sOLBKtnV9lChoBmgJaA9DCM+8HHbfUQvAlIaUUpRoFUsyaBZHQLNPdPKdQO51fZQoaAZoCWgPQwiUvDrHgMwNwJSGlFKUaBVLMmgWR0CzT1f9tMwldX2UKGgGaAloD0MInBcnvtoRA8CUhpRSlGgVSzJoFkdAs086zWwu/XV9lChoBmgJaA9DCPtcbcX+EhDAlIaUUpRoFUsyaBZHQLNPHfr8iwB1fZQoaAZoCWgPQwh1PGagMn4LwJSGlFKUaBVLMmgWR0CzT+aJAMUidX2UKGgGaAloD0MIg94bQwBwCsCUhpRSlGgVSzJoFkdAs0/JnezlcXV9lChoBmgJaA9DCDaxwFd0qwzAlIaUUpRoFUsyaBZHQLNPrJ17pmp1fZQoaAZoCWgPQwiySX7Er3gEwJSGlFKUaBVLMmgWR0CzT4/DDTBqdX2UKGgGaAloD0MIVhFuMqoMBcCUhpRSlGgVSzJoFkdAs1BeuW8h93V9lChoBmgJaA9DCMlVLH5T+AXAlIaUUpRoFUsyaBZHQLNQQbT+ee51fZQoaAZoCWgPQwgkfO9v0B4HwJSGlFKUaBVLMmgWR0CzUCSIHkcTdX2UKGgGaAloD0MISIrIsIo3A8CUhpRSlGgVSzJoFkdAs1AHpaA4GXV9lChoBmgJaA9DCArZeRubvQPAlIaUUpRoFUsyaBZHQLNQ1sgdOqN1fZQoaAZoCWgPQwgE6Pf9m7cOwJSGlFKUaBVLMmgWR0CzULnwgDA8dX2UKGgGaAloD0MIE9VbA1tl/r+UhpRSlGgVSzJoFkdAs1CczImw7nV9lChoBmgJaA9DCH7gKk8gDAfAlIaUUpRoFUsyaBZHQLNQf/MGHHp1fZQoaAZoCWgPQwh7a2CrBMsCwJSGlFKUaBVLMmgWR0CzUUfZAY51dX2UKGgGaAloD0MIX+6TowCxBsCUhpRSlGgVSzJoFkdAs1Eq4Vh1DHV9lChoBmgJaA9DCHUDBd7JpwTAlIaUUpRoFUsyaBZHQLNRDbh3qzJ1fZQoaAZoCWgPQwgZWMfxQ2UEwJSGlFKUaBVLMmgWR0CzUPDOcDr7dX2UKGgGaAloD0MIzEOmfAgKBsCUhpRSlGgVSzJoFkdAs1G7L8rI53V9lChoBmgJaA9DCJKx2vy/qgHAlIaUUpRoFUsyaBZHQLNRniVSn+B1fZQoaAZoCWgPQwhmSYCaWnYKwJSGlFKUaBVLMmgWR0CzUYFgtvn9dX2UKGgGaAloD0MIPKQYINFEBMCUhpRSlGgVSzJoFkdAs1FkjMV1wHV9lChoBmgJaA9DCDpdFhObTwvAlIaUUpRoFUsyaBZHQLNSKgJ1JUZ1fZQoaAZoCWgPQwgsDJHT17MKwJSGlFKUaBVLMmgWR0CzUg05hjOLdX2UKGgGaAloD0MIjSjtDb4QBMCUhpRSlGgVSzJoFkdAs1HwRNATqXV9lChoBmgJaA9DCBgnvtpRfAjAlIaUUpRoFUsyaBZHQLNR06EJ0GN1fZQoaAZoCWgPQwhwd9Zuu1ADwJSGlFKUaBVLMmgWR0CzUpvsqrimdX2UKGgGaAloD0MIj4mUZvNYCcCUhpRSlGgVSzJoFkdAs1J/A6+36XV9lChoBmgJaA9DCD3VITfDLQnAlIaUUpRoFUsyaBZHQLNSYf0mMOx1fZQoaAZoCWgPQwj9FTJXBjUBwJSGlFKUaBVLMmgWR0CzUkUgOjIrdX2UKGgGaAloD0MIk1FlGHeDBcCUhpRSlGgVSzJoFkdAs1MJOfukUXV9lChoBmgJaA9DCAEVjiCVggXAlIaUUpRoFUsyaBZHQLNS7E61b7l1fZQoaAZoCWgPQwgoYhHDDkMFwJSGlFKUaBVLMmgWR0CzUs8an753dX2UKGgGaAloD0MIqHNFKSEY/r+UhpRSlGgVSzJoFkdAs1KyLOzIFXV9lChoBmgJaA9DCN6P2y+frAzAlIaUUpRoFUsyaBZHQLNTe8E3bVV1fZQoaAZoCWgPQwgKStHKvaAGwJSGlFKUaBVLMmgWR0CzU169PDYRdX2UKGgGaAloD0MItixfl+H//r+UhpRSlGgVSzJoFkdAs1NBhmXgL3V9lChoBmgJaA9DCHe9NEWAMwTAlIaUUpRoFUsyaBZHQLNTJKDkELZ1fZQoaAZoCWgPQwh/vi1YqosFwJSGlFKUaBVLMmgWR0CzU+pQ53kgdX2UKGgGaAloD0MI1Em2upwSA8CUhpRSlGgVSzJoFkdAs1PNSIgvDnV9lChoBmgJaA9DCLsLlBRYIAjAlIaUUpRoFUsyaBZHQLNTsAxi5NJ1fZQoaAZoCWgPQwihZd0/FoIAwJSGlFKUaBVLMmgWR0CzU5M274BWdX2UKGgGaAloD0MI0bGDSlwnBcCUhpRSlGgVSzJoFkdAs1RaOWBz3nV9lChoBmgJaA9DCClcj8L1qATAlIaUUpRoFUsyaBZHQLNUPV6NVBF1fZQoaAZoCWgPQwhljXqIRpcGwJSGlFKUaBVLMmgWR0CzVCBGx2SudX2UKGgGaAloD0MIwXRat0HNB8CUhpRSlGgVSzJoFkdAs1QDaoMrmXV9lChoBmgJaA9DCBjNyvYhDw3AlIaUUpRoFUsyaBZHQLNU4jfvWpZ1fZQoaAZoCWgPQwjdXWdD/nkCwJSGlFKUaBVLMmgWR0CzVMVQEZBLdX2UKGgGaAloD0MIwVPIlXr2AMCUhpRSlGgVSzJoFkdAs1SoIE8q4HV9lChoBmgJaA9DCMuhRbbz/QXAlIaUUpRoFUsyaBZHQLNUizYVZcN1fZQoaAZoCWgPQwiK6UKs/sgEwJSGlFKUaBVLMmgWR0CzVVa8lHBldX2UKGgGaAloD0MIAFMGDmipBMCUhpRSlGgVSzJoFkdAs1U5udf9gnV9lChoBmgJaA9DCCS1UDI5lQHAlIaUUpRoFUsyaBZHQLNVHIyj59F1fZQoaAZoCWgPQwjUSba6nFIHwJSGlFKUaBVLMmgWR0CzVP+sxO+JdX2UKGgGaAloD0MIlkG1wYnIBcCUhpRSlGgVSzJoFkdAs1XVufmLcnV9lChoBmgJaA9DCKJ+F7ZmywXAlIaUUpRoFUsyaBZHQLNVuOKwY+B1fZQoaAZoCWgPQwjZtb3dknwFwJSGlFKUaBVLMmgWR0CzVZuw9q1xdX2UKGgGaAloD0MIXyS05VwKBMCUhpRSlGgVSzJoFkdAs1V+5TZQHnV9lChoBmgJaA9DCFor2hznNgfAlIaUUpRoFUsyaBZHQLNWRbqhUR51fZQoaAZoCWgPQwhGByRh324HwJSGlFKUaBVLMmgWR0CzViiyprDZdX2UKGgGaAloD0MIPZzAdFrXA8CUhpRSlGgVSzJoFkdAs1YLdUKiPHV9lChoBmgJaA9DCLQglPdxlAfAlIaUUpRoFUsyaBZHQLNV7obXHzZ1fZQoaAZoCWgPQwiWzRySWigKwJSGlFKUaBVLMmgWR0CzVrhQN0/4dX2UKGgGaAloD0MIAHMtWoBWCMCUhpRSlGgVSzJoFkdAs1abWBjFynV9lChoBmgJaA9DCIdOz7uxoAXAlIaUUpRoFUsyaBZHQLNWflj3Eht1fZQoaAZoCWgPQwi4ByEgX2ILwJSGlFKUaBVLMmgWR0CzVmF2eQMhdX2UKGgGaAloD0MIspyE0hdiBMCUhpRSlGgVSzJoFkdAs1crlMh5gXV9lChoBmgJaA9DCKUw73Gm6Q3AlIaUUpRoFUsyaBZHQLNXDqu8sc11fZQoaAZoCWgPQwgrildZ25QEwJSGlFKUaBVLMmgWR0CzVvF4keIVdX2UKGgGaAloD0MIeEMaFTj5BcCUhpRSlGgVSzJoFkdAs1bUkIHC43V9lChoBmgJaA9DCG3jT1Q2LAXAlIaUUpRoFUsyaBZHQLNXnb0OEuh1fZQoaAZoCWgPQwj/ImjMJIoJwJSGlFKUaBVLMmgWR0CzV4DAWSEEdX2UKGgGaAloD0MIMnbCS3BKBcCUhpRSlGgVSzJoFkdAs1djmU4aP3V9lChoBmgJaA9DCFcju9IysgfAlIaUUpRoFUsyaBZHQLNXRrGR3eN1fZQoaAZoCWgPQwiL4lXWNuUHwJSGlFKUaBVLMmgWR0CzWAxOclPadX2UKGgGaAloD0MItyVywRm8B8CUhpRSlGgVSzJoFkdAs1fvTiKiwnV9lChoBmgJaA9DCKndrwJ8VwPAlIaUUpRoFUsyaBZHQLNX0jhky1x1fZQoaAZoCWgPQwi77UJznUYCwJSGlFKUaBVLMmgWR0CzV7VWXC0odX2UKGgGaAloD0MIAaWhRiFJAsCUhpRSlGgVSzJoFkdAs1h77cfvF3V9lChoBmgJaA9DCFyRmKCGDwnAlIaUUpRoFUsyaBZHQLNYXvCMxXZ1fZQoaAZoCWgPQwhqErwhjQoGwJSGlFKUaBVLMmgWR0CzWEG+j/ModX2UKGgGaAloD0MI3e9QFOjzB8CUhpRSlGgVSzJoFkdAs1gk078vVXV9lChoBmgJaA9DCCUH7Gry1AXAlIaUUpRoFUsyaBZHQLNY7QZ4wAV1fZQoaAZoCWgPQwijeQCL/PoKwJSGlFKUaBVLMmgWR0CzWNASeyzHdX2UKGgGaAloD0MICVT/IJJBCMCUhpRSlGgVSzJoFkdAs1iy+K0laHV9lChoBmgJaA9DCJjCg2bXfQXAlIaUUpRoFUsyaBZHQLNYlhouf291ZS4="
|
81 |
},
|
82 |
"ep_success_buffer": {
|
83 |
":type:": "<class 'collections.deque'>",
|
84 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
85 |
},
|
86 |
+
"_n_updates": 100000,
|
87 |
"n_steps": 5,
|
88 |
"gamma": 0.99,
|
89 |
"gae_lambda": 1.0,
|
a2c-PandaReachDense-v2/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 44734
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:dc1aa22006ddd06bf04ae619ce69d5300c3de87c68839b12ad7894f3ee362543
|
3 |
size 44734
|
a2c-PandaReachDense-v2/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 46014
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2089a5cca48400d9b045b29b6157aa6ce4a40f8f05933ff3d9d06c8274b40a30
|
3 |
size 46014
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f34943b6820>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f34943b7300>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1674860893732148934, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAtg7SPq/iBzy8tig/tg7SPq/iBzy8tig/tg7SPq/iBzy8tig/tg7SPq/iBzy8tig/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAb2xIvUHx2j8aijI/P4zKPwvDw7+M7ca+vhaxP1f60L8gSey9JbaJv63kzj/avfM+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAC2DtI+r+IHPLy2KD/5m+s8zNBFOGRMBz22DtI+r+IHPLy2KD/5m+s8zNBFOGRMBz22DtI+r+IHPLy2KD/5m+s8zNBFOGRMBz22DtI+r+IHPLy2KD/5m+s8zNBFOGRMBz2UaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[0.4102685 0.00829379 0.6590383 ]\n [0.4102685 0.00829379 0.6590383 ]\n [0.4102685 0.00829379 0.6590383 ]\n [0.4102685 0.00829379 0.6590383 ]]", "desired_goal": "[[-0.04893154 1.7104875 0.69741976]\n [ 1.582405 -1.5293897 -0.3885311 ]\n [ 1.3835065 -1.6326398 -0.11537385]\n [-1.0758711 1.6163536 0.47605783]]", "observation": "[[4.1026849e-01 8.2937917e-03 6.5903831e-01 2.8760897e-02 4.7162917e-05\n 3.3031836e-02]\n [4.1026849e-01 8.2937917e-03 6.5903831e-01 2.8760897e-02 4.7162917e-05\n 3.3031836e-02]\n [4.1026849e-01 8.2937917e-03 6.5903831e-01 2.8760897e-02 4.7162917e-05\n 3.3031836e-02]\n [4.1026849e-01 8.2937917e-03 6.5903831e-01 2.8760897e-02 4.7162917e-05\n 3.3031836e-02]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAyEF2vfnK4D0dcUk+3sZ/vQD0Lj3aGyo+lCzIPZQpRT0Hc0g+6O0LPrNtCb7k6YU+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.06012133 0.10976214 0.19672056]\n [-0.06244551 0.04271317 0.16612187]\n [ 0.09774128 0.04813536 0.1957513 ]\n [ 0.13664973 -0.13420753 0.26155007]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI/DbEeM1rC8CUhpRSlIwBbJRLMowBdJRHQKNmWEyLyc11fZQoaAZoCWgPQwihTKPJxRgawJSGlFKUaBVLMmgWR0CjZh3qqwQldX2UKGgGaAloD0MILLe0GhK3DcCUhpRSlGgVSzJoFkdAo2XimfoRqXV9lChoBmgJaA9DCFIpdjQOxRDAlIaUUpRoFUsyaBZHQKNlpAt4A0d1fZQoaAZoCWgPQwjzWDMyyD0KwJSGlFKUaBVLMmgWR0CjZziMYMvzdX2UKGgGaAloD0MIYMlVLH7zA8CUhpRSlGgVSzJoFkdAo2b+KTB68nV9lChoBmgJaA9DCDsb8s8MIg/AlIaUUpRoFUsyaBZHQKNmwtHxz7x1fZQoaAZoCWgPQwietdsuNFcIwJSGlFKUaBVLMmgWR0CjZoRO1v2odX2UKGgGaAloD0MIHjaRmQvcD8CUhpRSlGgVSzJoFkdAo2gcFwDNhXV9lChoBmgJaA9DCBQi4BCqlAbAlIaUUpRoFUsyaBZHQKNn4fK6nR91fZQoaAZoCWgPQwjsMZHSbL4IwJSGlFKUaBVLMmgWR0CjZ6bH6uW9dX2UKGgGaAloD0MIle6usyGfCMCUhpRSlGgVSzJoFkdAo2doZbY9PnV9lChoBmgJaA9DCFw8vOfAMgfAlIaUUpRoFUsyaBZHQKNpBmQKa5R1fZQoaAZoCWgPQwjaq4+HvisQwJSGlFKUaBVLMmgWR0CjaMw2MsH0dX2UKGgGaAloD0MIV+nuOhuSCsCUhpRSlGgVSzJoFkdAo2iQ9/z8QHV9lChoBmgJaA9DCGak3lM5TQzAlIaUUpRoFUsyaBZHQKNoUntOVPh1fZQoaAZoCWgPQwiRfZBlwWQTwJSGlFKUaBVLMmgWR0CjaerY5DJEdX2UKGgGaAloD0MICmgibHjaBsCUhpRSlGgVSzJoFkdAo2mwX668QXV9lChoBmgJaA9DCD85ChAFMwjAlIaUUpRoFUsyaBZHQKNpdPacqe91fZQoaAZoCWgPQwinPSXnxI4XwJSGlFKUaBVLMmgWR0CjaTZvLowFdX2UKGgGaAloD0MICd0lcVaED8CUhpRSlGgVSzJoFkdAo2ra0UoKD3V9lChoBmgJaA9DCFEWvr7WpQbAlIaUUpRoFUsyaBZHQKNqoFCb+cZ1fZQoaAZoCWgPQwgwuVFkrWENwJSGlFKUaBVLMmgWR0CjamUkGA09dX2UKGgGaAloD0MIVoDvNm9cCsCUhpRSlGgVSzJoFkdAo2omll9SdnV9lChoBmgJaA9DCE+RQ8TNiQTAlIaUUpRoFUsyaBZHQKNrxQVsUIt1fZQoaAZoCWgPQwg3T3XIzTAFwJSGlFKUaBVLMmgWR0Cja4qiGnGbdX2UKGgGaAloD0MImkNSCyWDEMCUhpRSlGgVSzJoFkdAo2tPU6PsA3V9lChoBmgJaA9DCKbydoTTMhDAlIaUUpRoFUsyaBZHQKNrEOZLIxR1fZQoaAZoCWgPQwhDOjyE8QMawJSGlFKUaBVLMmgWR0CjbLB1klNUdX2UKGgGaAloD0MIEjElkuglA8CUhpRSlGgVSzJoFkdAo2x2LHdXT3V9lChoBmgJaA9DCENYjSWsnRPAlIaUUpRoFUsyaBZHQKNsOtHQQcx1fZQoaAZoCWgPQwil12ZjJVYWwJSGlFKUaBVLMmgWR0Cja/xHG0eEdX2UKGgGaAloD0MIAiuHFtmODsCUhpRSlGgVSzJoFkdAo22he1KGtnV9lChoBmgJaA9DCL02GysxDwvAlIaUUpRoFUsyaBZHQKNtZ1kDp1R1fZQoaAZoCWgPQwjXFMjsLHoGwJSGlFKUaBVLMmgWR0CjbSwC0WuYdX2UKGgGaAloD0MIxmzJqgiXBcCUhpRSlGgVSzJoFkdAo2ztc8kleHV9lChoBmgJaA9DCHLBGfz9Qg3AlIaUUpRoFUsyaBZHQKNuisaKk2x1fZQoaAZoCWgPQwjo2az6XE0IwJSGlFKUaBVLMmgWR0CjblBr30wrdX2UKGgGaAloD0MIxXHg1XInCMCUhpRSlGgVSzJoFkdAo24VE9dNWXV9lChoBmgJaA9DCH8WS5F8pQbAlIaUUpRoFUsyaBZHQKNt1qsU7CB1fZQoaAZoCWgPQwhcrROX43UKwJSGlFKUaBVLMmgWR0Cjb3R/NJOGdX2UKGgGaAloD0MIbAVNS6ysCcCUhpRSlGgVSzJoFkdAo286IUJv53V9lChoBmgJaA9DCCRens4VFRvAlIaUUpRoFUsyaBZHQKNu/tTDO1R1fZQoaAZoCWgPQwjNzTeie9YFwJSGlFKUaBVLMmgWR0CjbsCm/FisdX2UKGgGaAloD0MIkBFQ4QgSHsCUhpRSlGgVSzJoFkdAo3BZVS4vvnV9lChoBmgJaA9DCNy8cVKYFwPAlIaUUpRoFUsyaBZHQKNwHvybx3F1fZQoaAZoCWgPQwhcj8L1KBwOwJSGlFKUaBVLMmgWR0Cjb+OearmydX2UKGgGaAloD0MI08H6P4cJEsCUhpRSlGgVSzJoFkdAo2+lWIXTE3V9lChoBmgJaA9DCPuVzodnyQbAlIaUUpRoFUsyaBZHQKNxRpM6BAh1fZQoaAZoCWgPQwgRxk/j3owSwJSGlFKUaBVLMmgWR0CjcQxK6FufdX2UKGgGaAloD0MIhShf0EJiEsCUhpRSlGgVSzJoFkdAo3DROvdM03V9lChoBmgJaA9DCOVH/Io1XBTAlIaUUpRoFUsyaBZHQKNwkwt8NQV1fZQoaAZoCWgPQwjp7c9FQ3YTwJSGlFKUaBVLMmgWR0CjckDaPCEYdX2UKGgGaAloD0MIQl96+3OxFMCUhpRSlGgVSzJoFkdAo3IGgpSaVnV9lChoBmgJaA9DCGb5ugz/6QXAlIaUUpRoFUsyaBZHQKNxy8PFvQ51fZQoaAZoCWgPQwg//tKiPqkLwJSGlFKUaBVLMmgWR0CjcY1IAfdRdX2UKGgGaAloD0MITHDqA8lbEcCUhpRSlGgVSzJoFkdAo3NEedTYNHV9lChoBmgJaA9DCP5+MVuy6gzAlIaUUpRoFUsyaBZHQKNzCiW3Sa51fZQoaAZoCWgPQwg6sYf2sdIQwJSGlFKUaBVLMmgWR0Cjcs8KG+K1dX2UKGgGaAloD0MIA1slWBzuC8CUhpRSlGgVSzJoFkdAo3KQoPTXrnV9lChoBmgJaA9DCGSxTSoaqwnAlIaUUpRoFUsyaBZHQKN0R2L5ylx1fZQoaAZoCWgPQwiNCwdCsmAIwJSGlFKUaBVLMmgWR0CjdA0kv9LpdX2UKGgGaAloD0MIP6iLFMpiCMCUhpRSlGgVSzJoFkdAo3PSYRdyDXV9lChoBmgJaA9DCE+xahDmJhfAlIaUUpRoFUsyaBZHQKNzk/h2nsN1fZQoaAZoCWgPQwi+pZwv9q4QwJSGlFKUaBVLMmgWR0CjdTlwT/Q0dX2UKGgGaAloD0MIyJQPQdVYEcCUhpRSlGgVSzJoFkdAo3T/GKhtcnV9lChoBmgJaA9DCIsWoG01CwXAlIaUUpRoFUsyaBZHQKN0xDCP6sR1fZQoaAZoCWgPQwhRoE/kSbILwJSGlFKUaBVLMmgWR0CjdIWz4UN8dX2UKGgGaAloD0MIyAbSxaa1FsCUhpRSlGgVSzJoFkdAo3Y51xKg7HV9lChoBmgJaA9DCDhqhel7bRDAlIaUUpRoFUsyaBZHQKN1/7UG3Wp1fZQoaAZoCWgPQwi6umOxTXoZwJSGlFKUaBVLMmgWR0CjdcSZjQRgdX2UKGgGaAloD0MIXYyBdRy/CcCUhpRSlGgVSzJoFkdAo3WGhdt2tHV9lChoBmgJaA9DCO+MtiqJrAjAlIaUUpRoFUsyaBZHQKN3I9ZA6dV1fZQoaAZoCWgPQwgeboeGxTgQwJSGlFKUaBVLMmgWR0CjdumlqJuVdX2UKGgGaAloD0MI+MYQABxLE8CUhpRSlGgVSzJoFkdAo3auhTOxB3V9lChoBmgJaA9DCP1qDhDMMQzAlIaUUpRoFUsyaBZHQKN2cBjFyaN1fZQoaAZoCWgPQwidEhCTcKEPwJSGlFKUaBVLMmgWR0CjeBCKziS8dX2UKGgGaAloD0MIgJpattb3E8CUhpRSlGgVSzJoFkdAo3fWFHrhSHV9lChoBmgJaA9DCAtgysABvRnAlIaUUpRoFUsyaBZHQKN3mslsxfx1fZQoaAZoCWgPQwjRV5BmLPoFwJSGlFKUaBVLMmgWR0Cjd1xNZeRgdX2UKGgGaAloD0MINJ9zt+tFBcCUhpRSlGgVSzJoFkdAo3j9vl2eQXV9lChoBmgJaA9DCDAqqRPQ9BfAlIaUUpRoFUsyaBZHQKN4wzwc5sF1fZQoaAZoCWgPQwhm2ZPA5owUwJSGlFKUaBVLMmgWR0CjeIgckt2+dX2UKGgGaAloD0MI2zF1V3bhCsCUhpRSlGgVSzJoFkdAo3hJnlGPP3V9lChoBmgJaA9DCBRcrKjBNAzAlIaUUpRoFUsyaBZHQKN57QhwEQp1fZQoaAZoCWgPQwigxOdOsB8ZwJSGlFKUaBVLMmgWR0CjebLOiWVvdX2UKGgGaAloD0MIQwJGlzeXF8CUhpRSlGgVSzJoFkdAo3l3zBhx53V9lChoBmgJaA9DCAg+BitO9QzAlIaUUpRoFUsyaBZHQKN5OWrOqvN1fZQoaAZoCWgPQwj2XKYmwXsKwJSGlFKUaBVLMmgWR0CjeuOZb6gvdX2UKGgGaAloD0MIvXFSmPcYB8CUhpRSlGgVSzJoFkdAo3qpaA4GU3V9lChoBmgJaA9DCGEcXDrmHAfAlIaUUpRoFUsyaBZHQKN6bhb4agp1fZQoaAZoCWgPQwjn4QSm0yoRwJSGlFKUaBVLMmgWR0Cjei+UpuuSdX2UKGgGaAloD0MIih2NQ/2eF8CUhpRSlGgVSzJoFkdAo3vUXm/34HV9lChoBmgJaA9DCNU+HY8ZSAXAlIaUUpRoFUsyaBZHQKN7mf5k9U11fZQoaAZoCWgPQwgVOxqH+r0FwJSGlFKUaBVLMmgWR0Cje16ZH/cWdX2UKGgGaAloD0MI7Ulgcw4+EMCUhpRSlGgVSzJoFkdAo3sgXGff43V9lChoBmgJaA9DCFmIDoEjQQvAlIaUUpRoFUsyaBZHQKN8v5xBE8d1fZQoaAZoCWgPQwgbLJyk+cMHwJSGlFKUaBVLMmgWR0CjfIUnG828dX2UKGgGaAloD0MIz6RN1T1yDcCUhpRSlGgVSzJoFkdAo3xKBbwBo3V9lChoBmgJaA9DCCFblq/LUAvAlIaUUpRoFUsyaBZHQKN8C4EwFkh1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f54ef7ad430>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f54ef7a1f00>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1675017031273832812, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAaI7cPqBfm7yvQhE/aI7cPqBfm7yvQhE/aI7cPqBfm7yvQhE/aI7cPqBfm7yvQhE/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA3cyvvxIJHj/6BMs+s2auv03vsT8m95O/bu+lP7oMir8A5ak/DIMkP4htJL+oHSG/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAABojtw+oF+bvK9CET8ZqSw8SBNqu3W1G7tojtw+oF+bvK9CET8ZqSw8SBNqu3W1G7tojtw+oF+bvK9CET8ZqSw8SBNqu3W1G7tojtw+oF+bvK9CET8ZqSw8SBNqu3W1G7uUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.43077397 -0.0189665 0.56742376]\n [ 0.43077397 -0.0189665 0.56742376]\n [ 0.43077397 -0.0189665 0.56742376]\n [ 0.43077397 -0.0189665 0.56742376]]", "desired_goal": "[[-1.3734394 0.6173259 0.39652234]\n [-1.3625091 1.3901154 -1.1559799 ]\n [ 1.2963693 -1.0785134 1.327301 ]\n [ 0.6426246 -0.6422963 -0.62935877]]", "observation": "[[ 0.43077397 -0.0189665 0.56742376 0.01053836 -0.00357171 -0.00237593]\n [ 0.43077397 -0.0189665 0.56742376 0.01053836 -0.00357171 -0.00237593]\n [ 0.43077397 -0.0189665 0.56742376 0.01053836 -0.00357171 -0.00237593]\n [ 0.43077397 -0.0189665 0.56742376 0.01053836 -0.00357171 -0.00237593]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA8ZoQPiCwpjwPoWo+wEDwvKFJxz2pFtk9LjjKPUwPCj4kz7c9J9HnPFBZXT0FrWE+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.14121605 0.02034765 0.22913001]\n [-0.02932775 0.0973084 0.10600025]\n [ 0.09873997 0.13482398 0.08975056]\n [ 0.02829797 0.05404025 0.22038658]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIv0nToGjeC8CUhpRSlIwBbJRLMowBdJRHQLNOI24uscR1fZQoaAZoCWgPQwhEGapiKh0FwJSGlFKUaBVLMmgWR0CzTgZV4oqkdX2UKGgGaAloD0MIW5nwS/08BMCUhpRSlGgVSzJoFkdAs03pH6MzdnV9lChoBmgJaA9DCMnMBS6PdRLAlIaUUpRoFUsyaBZHQLNNzFkQPI51fZQoaAZoCWgPQwjElbN3RnsFwJSGlFKUaBVLMmgWR0CzTpV0YCQtdX2UKGgGaAloD0MIPlsHB3tzC8CUhpRSlGgVSzJoFkdAs054k7fYSXV9lChoBmgJaA9DCEBPAwZJ/xDAlIaUUpRoFUsyaBZHQLNOW1wYLst1fZQoaAZoCWgPQwgiMxe4PPYIwJSGlFKUaBVLMmgWR0CzTj5tWMjvdX2UKGgGaAloD0MI7ib4pumzA8CUhpRSlGgVSzJoFkdAs08DBrN4aHV9lChoBmgJaA9DCCv2l92TRwXAlIaUUpRoFUsyaBZHQLNO5fzBhx51fZQoaAZoCWgPQwiLVBhbCLILwJSGlFKUaBVLMmgWR0CzTsjvmYBvdX2UKGgGaAloD0MII6DCEaSyD8CUhpRSlGgVSzJoFkdAs06sOLBKtnV9lChoBmgJaA9DCM+8HHbfUQvAlIaUUpRoFUsyaBZHQLNPdPKdQO51fZQoaAZoCWgPQwiUvDrHgMwNwJSGlFKUaBVLMmgWR0CzT1f9tMwldX2UKGgGaAloD0MInBcnvtoRA8CUhpRSlGgVSzJoFkdAs086zWwu/XV9lChoBmgJaA9DCPtcbcX+EhDAlIaUUpRoFUsyaBZHQLNPHfr8iwB1fZQoaAZoCWgPQwh1PGagMn4LwJSGlFKUaBVLMmgWR0CzT+aJAMUidX2UKGgGaAloD0MIg94bQwBwCsCUhpRSlGgVSzJoFkdAs0/JnezlcXV9lChoBmgJaA9DCDaxwFd0qwzAlIaUUpRoFUsyaBZHQLNPrJ17pmp1fZQoaAZoCWgPQwiySX7Er3gEwJSGlFKUaBVLMmgWR0CzT4/DDTBqdX2UKGgGaAloD0MIVhFuMqoMBcCUhpRSlGgVSzJoFkdAs1BeuW8h93V9lChoBmgJaA9DCMlVLH5T+AXAlIaUUpRoFUsyaBZHQLNQQbT+ee51fZQoaAZoCWgPQwgkfO9v0B4HwJSGlFKUaBVLMmgWR0CzUCSIHkcTdX2UKGgGaAloD0MISIrIsIo3A8CUhpRSlGgVSzJoFkdAs1AHpaA4GXV9lChoBmgJaA9DCArZeRubvQPAlIaUUpRoFUsyaBZHQLNQ1sgdOqN1fZQoaAZoCWgPQwgE6Pf9m7cOwJSGlFKUaBVLMmgWR0CzULnwgDA8dX2UKGgGaAloD0MIE9VbA1tl/r+UhpRSlGgVSzJoFkdAs1CczImw7nV9lChoBmgJaA9DCH7gKk8gDAfAlIaUUpRoFUsyaBZHQLNQf/MGHHp1fZQoaAZoCWgPQwh7a2CrBMsCwJSGlFKUaBVLMmgWR0CzUUfZAY51dX2UKGgGaAloD0MIX+6TowCxBsCUhpRSlGgVSzJoFkdAs1Eq4Vh1DHV9lChoBmgJaA9DCHUDBd7JpwTAlIaUUpRoFUsyaBZHQLNRDbh3qzJ1fZQoaAZoCWgPQwgZWMfxQ2UEwJSGlFKUaBVLMmgWR0CzUPDOcDr7dX2UKGgGaAloD0MIzEOmfAgKBsCUhpRSlGgVSzJoFkdAs1G7L8rI53V9lChoBmgJaA9DCJKx2vy/qgHAlIaUUpRoFUsyaBZHQLNRniVSn+B1fZQoaAZoCWgPQwhmSYCaWnYKwJSGlFKUaBVLMmgWR0CzUYFgtvn9dX2UKGgGaAloD0MIPKQYINFEBMCUhpRSlGgVSzJoFkdAs1FkjMV1wHV9lChoBmgJaA9DCDpdFhObTwvAlIaUUpRoFUsyaBZHQLNSKgJ1JUZ1fZQoaAZoCWgPQwgsDJHT17MKwJSGlFKUaBVLMmgWR0CzUg05hjOLdX2UKGgGaAloD0MIjSjtDb4QBMCUhpRSlGgVSzJoFkdAs1HwRNATqXV9lChoBmgJaA9DCBgnvtpRfAjAlIaUUpRoFUsyaBZHQLNR06EJ0GN1fZQoaAZoCWgPQwhwd9Zuu1ADwJSGlFKUaBVLMmgWR0CzUpvsqrimdX2UKGgGaAloD0MIj4mUZvNYCcCUhpRSlGgVSzJoFkdAs1J/A6+36XV9lChoBmgJaA9DCD3VITfDLQnAlIaUUpRoFUsyaBZHQLNSYf0mMOx1fZQoaAZoCWgPQwj9FTJXBjUBwJSGlFKUaBVLMmgWR0CzUkUgOjIrdX2UKGgGaAloD0MIk1FlGHeDBcCUhpRSlGgVSzJoFkdAs1MJOfukUXV9lChoBmgJaA9DCAEVjiCVggXAlIaUUpRoFUsyaBZHQLNS7E61b7l1fZQoaAZoCWgPQwgoYhHDDkMFwJSGlFKUaBVLMmgWR0CzUs8an753dX2UKGgGaAloD0MIqHNFKSEY/r+UhpRSlGgVSzJoFkdAs1KyLOzIFXV9lChoBmgJaA9DCN6P2y+frAzAlIaUUpRoFUsyaBZHQLNTe8E3bVV1fZQoaAZoCWgPQwgKStHKvaAGwJSGlFKUaBVLMmgWR0CzU169PDYRdX2UKGgGaAloD0MItixfl+H//r+UhpRSlGgVSzJoFkdAs1NBhmXgL3V9lChoBmgJaA9DCHe9NEWAMwTAlIaUUpRoFUsyaBZHQLNTJKDkELZ1fZQoaAZoCWgPQwh/vi1YqosFwJSGlFKUaBVLMmgWR0CzU+pQ53kgdX2UKGgGaAloD0MI1Em2upwSA8CUhpRSlGgVSzJoFkdAs1PNSIgvDnV9lChoBmgJaA9DCLsLlBRYIAjAlIaUUpRoFUsyaBZHQLNTsAxi5NJ1fZQoaAZoCWgPQwihZd0/FoIAwJSGlFKUaBVLMmgWR0CzU5M274BWdX2UKGgGaAloD0MI0bGDSlwnBcCUhpRSlGgVSzJoFkdAs1RaOWBz3nV9lChoBmgJaA9DCClcj8L1qATAlIaUUpRoFUsyaBZHQLNUPV6NVBF1fZQoaAZoCWgPQwhljXqIRpcGwJSGlFKUaBVLMmgWR0CzVCBGx2SudX2UKGgGaAloD0MIwXRat0HNB8CUhpRSlGgVSzJoFkdAs1QDaoMrmXV9lChoBmgJaA9DCBjNyvYhDw3AlIaUUpRoFUsyaBZHQLNU4jfvWpZ1fZQoaAZoCWgPQwjdXWdD/nkCwJSGlFKUaBVLMmgWR0CzVMVQEZBLdX2UKGgGaAloD0MIwVPIlXr2AMCUhpRSlGgVSzJoFkdAs1SoIE8q4HV9lChoBmgJaA9DCMuhRbbz/QXAlIaUUpRoFUsyaBZHQLNUizYVZcN1fZQoaAZoCWgPQwiK6UKs/sgEwJSGlFKUaBVLMmgWR0CzVVa8lHBldX2UKGgGaAloD0MIAFMGDmipBMCUhpRSlGgVSzJoFkdAs1U5udf9gnV9lChoBmgJaA9DCCS1UDI5lQHAlIaUUpRoFUsyaBZHQLNVHIyj59F1fZQoaAZoCWgPQwjUSba6nFIHwJSGlFKUaBVLMmgWR0CzVP+sxO+JdX2UKGgGaAloD0MIlkG1wYnIBcCUhpRSlGgVSzJoFkdAs1XVufmLcnV9lChoBmgJaA9DCKJ+F7ZmywXAlIaUUpRoFUsyaBZHQLNVuOKwY+B1fZQoaAZoCWgPQwjZtb3dknwFwJSGlFKUaBVLMmgWR0CzVZuw9q1xdX2UKGgGaAloD0MIXyS05VwKBMCUhpRSlGgVSzJoFkdAs1V+5TZQHnV9lChoBmgJaA9DCFor2hznNgfAlIaUUpRoFUsyaBZHQLNWRbqhUR51fZQoaAZoCWgPQwhGByRh324HwJSGlFKUaBVLMmgWR0CzViiyprDZdX2UKGgGaAloD0MIPZzAdFrXA8CUhpRSlGgVSzJoFkdAs1YLdUKiPHV9lChoBmgJaA9DCLQglPdxlAfAlIaUUpRoFUsyaBZHQLNV7obXHzZ1fZQoaAZoCWgPQwiWzRySWigKwJSGlFKUaBVLMmgWR0CzVrhQN0/4dX2UKGgGaAloD0MIAHMtWoBWCMCUhpRSlGgVSzJoFkdAs1abWBjFynV9lChoBmgJaA9DCIdOz7uxoAXAlIaUUpRoFUsyaBZHQLNWflj3Eht1fZQoaAZoCWgPQwi4ByEgX2ILwJSGlFKUaBVLMmgWR0CzVmF2eQMhdX2UKGgGaAloD0MIspyE0hdiBMCUhpRSlGgVSzJoFkdAs1crlMh5gXV9lChoBmgJaA9DCKUw73Gm6Q3AlIaUUpRoFUsyaBZHQLNXDqu8sc11fZQoaAZoCWgPQwgrildZ25QEwJSGlFKUaBVLMmgWR0CzVvF4keIVdX2UKGgGaAloD0MIeEMaFTj5BcCUhpRSlGgVSzJoFkdAs1bUkIHC43V9lChoBmgJaA9DCG3jT1Q2LAXAlIaUUpRoFUsyaBZHQLNXnb0OEuh1fZQoaAZoCWgPQwj/ImjMJIoJwJSGlFKUaBVLMmgWR0CzV4DAWSEEdX2UKGgGaAloD0MIMnbCS3BKBcCUhpRSlGgVSzJoFkdAs1djmU4aP3V9lChoBmgJaA9DCFcju9IysgfAlIaUUpRoFUsyaBZHQLNXRrGR3eN1fZQoaAZoCWgPQwiL4lXWNuUHwJSGlFKUaBVLMmgWR0CzWAxOclPadX2UKGgGaAloD0MItyVywRm8B8CUhpRSlGgVSzJoFkdAs1fvTiKiwnV9lChoBmgJaA9DCKndrwJ8VwPAlIaUUpRoFUsyaBZHQLNX0jhky1x1fZQoaAZoCWgPQwi77UJznUYCwJSGlFKUaBVLMmgWR0CzV7VWXC0odX2UKGgGaAloD0MIAaWhRiFJAsCUhpRSlGgVSzJoFkdAs1h77cfvF3V9lChoBmgJaA9DCFyRmKCGDwnAlIaUUpRoFUsyaBZHQLNYXvCMxXZ1fZQoaAZoCWgPQwhqErwhjQoGwJSGlFKUaBVLMmgWR0CzWEG+j/ModX2UKGgGaAloD0MI3e9QFOjzB8CUhpRSlGgVSzJoFkdAs1gk078vVXV9lChoBmgJaA9DCCUH7Gry1AXAlIaUUpRoFUsyaBZHQLNY7QZ4wAV1fZQoaAZoCWgPQwijeQCL/PoKwJSGlFKUaBVLMmgWR0CzWNASeyzHdX2UKGgGaAloD0MICVT/IJJBCMCUhpRSlGgVSzJoFkdAs1iy+K0laHV9lChoBmgJaA9DCJjCg2bXfQXAlIaUUpRoFUsyaBZHQLNYlhouf291ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 100000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
replay.mp4
CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
|
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward": -
|
|
|
1 |
+
{"mean_reward": -3.0288312614895405, "std_reward": 0.5842806634510067, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-29T20:28:04.580086"}
|
vec_normalize.pkl
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 3056
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d7dbe3cace6440499224fada431b54fe99bc83831a167b3ace21bb9ffce3de8f
|
3 |
size 3056
|