|
import os
|
|
from enum import IntEnum
|
|
from pathlib import Path
|
|
from tempfile import mktemp
|
|
from typing import IO, Dict, Type
|
|
|
|
import cv2
|
|
import numpy as np
|
|
import torch
|
|
import torch.nn as nn
|
|
import torch.nn.functional as F
|
|
from gradio import Interface, inputs, outputs
|
|
|
|
DEVICE = "cpu"
|
|
|
|
WEIGHTS_PATH = Path(__file__).parent / "weights"
|
|
|
|
AVALIABLE_WEIGHTS = {
|
|
basename: path
|
|
for basename, ext in (
|
|
os.path.splitext(filename) for filename in os.listdir(WEIGHTS_PATH)
|
|
)
|
|
if (path := WEIGHTS_PATH / (basename + ext)).is_file() and ext.endswith("pth")
|
|
}
|
|
|
|
|
|
class ScaleMode(IntEnum):
|
|
up2x = 2
|
|
up3x = 3
|
|
up4x = 4
|
|
|
|
|
|
class TileMode(IntEnum):
|
|
full = 0
|
|
half = 1
|
|
quarter = 2
|
|
ninth = 3
|
|
sixteenth = 4
|
|
|
|
|
|
class SEBlock(nn.Module):
|
|
def __init__(self, in_channels, reduction=8, bias=False):
|
|
super(SEBlock, self).__init__()
|
|
self.conv1 = nn.Conv2d(
|
|
in_channels, in_channels // reduction, 1, 1, 0, bias=bias
|
|
)
|
|
self.conv2 = nn.Conv2d(
|
|
in_channels // reduction, in_channels, 1, 1, 0, bias=bias
|
|
)
|
|
|
|
def forward(self, x):
|
|
if "Half" in x.type():
|
|
x0 = torch.mean(x.float(), dim=(2, 3), keepdim=True).half()
|
|
else:
|
|
x0 = torch.mean(x, dim=(2, 3), keepdim=True)
|
|
x0 = self.conv1(x0)
|
|
x0 = F.relu(x0, inplace=True)
|
|
x0 = self.conv2(x0)
|
|
x0 = torch.sigmoid(x0)
|
|
x = torch.mul(x, x0)
|
|
return x
|
|
|
|
def forward_mean(self, x, x0):
|
|
x0 = self.conv1(x0)
|
|
x0 = F.relu(x0, inplace=True)
|
|
x0 = self.conv2(x0)
|
|
x0 = torch.sigmoid(x0)
|
|
x = torch.mul(x, x0)
|
|
return x
|
|
|
|
|
|
class UNetConv(nn.Module):
|
|
def __init__(self, in_channels, mid_channels, out_channels, se):
|
|
super(UNetConv, self).__init__()
|
|
self.conv = nn.Sequential(
|
|
nn.Conv2d(in_channels, mid_channels, 3, 1, 0),
|
|
nn.LeakyReLU(0.1, inplace=True),
|
|
nn.Conv2d(mid_channels, out_channels, 3, 1, 0),
|
|
nn.LeakyReLU(0.1, inplace=True),
|
|
)
|
|
if se:
|
|
self.seblock = SEBlock(out_channels, reduction=8, bias=True)
|
|
else:
|
|
self.seblock = None
|
|
|
|
def forward(self, x):
|
|
z = self.conv(x)
|
|
if self.seblock is not None:
|
|
z = self.seblock(z)
|
|
return z
|
|
|
|
|
|
class UNet1(nn.Module):
|
|
def __init__(self, in_channels, out_channels, deconv):
|
|
super(UNet1, self).__init__()
|
|
self.conv1 = UNetConv(in_channels, 32, 64, se=False)
|
|
self.conv1_down = nn.Conv2d(64, 64, 2, 2, 0)
|
|
self.conv2 = UNetConv(64, 128, 64, se=True)
|
|
self.conv2_up = nn.ConvTranspose2d(64, 64, 2, 2, 0)
|
|
self.conv3 = nn.Conv2d(64, 64, 3, 1, 0)
|
|
|
|
if deconv:
|
|
self.conv_bottom = nn.ConvTranspose2d(64, out_channels, 4, 2, 3)
|
|
else:
|
|
self.conv_bottom = nn.Conv2d(64, out_channels, 3, 1, 0)
|
|
|
|
for m in self.modules():
|
|
if isinstance(m, (nn.Conv2d, nn.ConvTranspose2d)):
|
|
nn.init.kaiming_normal_(m.weight, mode="fan_out", nonlinearity="relu")
|
|
elif isinstance(m, nn.Linear):
|
|
nn.init.normal_(m.weight, 0, 0.01)
|
|
if m.bias is not None:
|
|
nn.init.constant_(m.bias, 0)
|
|
|
|
def forward(self, x):
|
|
x1 = self.conv1(x)
|
|
x2 = self.conv1_down(x1)
|
|
x2 = F.leaky_relu(x2, 0.1, inplace=True)
|
|
x2 = self.conv2(x2)
|
|
x2 = self.conv2_up(x2)
|
|
x2 = F.leaky_relu(x2, 0.1, inplace=True)
|
|
|
|
x1 = F.pad(x1, (-4, -4, -4, -4))
|
|
x3 = self.conv3(x1 + x2)
|
|
x3 = F.leaky_relu(x3, 0.1, inplace=True)
|
|
z = self.conv_bottom(x3)
|
|
return z
|
|
|
|
def forward_a(self, x):
|
|
x1 = self.conv1(x)
|
|
x2 = self.conv1_down(x1)
|
|
x2 = F.leaky_relu(x2, 0.1, inplace=True)
|
|
x2 = self.conv2.conv(x2)
|
|
return x1, x2
|
|
|
|
def forward_b(self, x1, x2):
|
|
x2 = self.conv2_up(x2)
|
|
x2 = F.leaky_relu(x2, 0.1, inplace=True)
|
|
|
|
x1 = F.pad(x1, (-4, -4, -4, -4))
|
|
x3 = self.conv3(x1 + x2)
|
|
x3 = F.leaky_relu(x3, 0.1, inplace=True)
|
|
z = self.conv_bottom(x3)
|
|
return z
|
|
|
|
|
|
class UNet1x3(nn.Module):
|
|
def __init__(self, in_channels, out_channels, deconv):
|
|
super(UNet1x3, self).__init__()
|
|
self.conv1 = UNetConv(in_channels, 32, 64, se=False)
|
|
self.conv1_down = nn.Conv2d(64, 64, 2, 2, 0)
|
|
self.conv2 = UNetConv(64, 128, 64, se=True)
|
|
self.conv2_up = nn.ConvTranspose2d(64, 64, 2, 2, 0)
|
|
self.conv3 = nn.Conv2d(64, 64, 3, 1, 0)
|
|
|
|
if deconv:
|
|
self.conv_bottom = nn.ConvTranspose2d(64, out_channels, 5, 3, 2)
|
|
else:
|
|
self.conv_bottom = nn.Conv2d(64, out_channels, 3, 1, 0)
|
|
|
|
for m in self.modules():
|
|
if isinstance(m, (nn.Conv2d, nn.ConvTranspose2d)):
|
|
nn.init.kaiming_normal_(m.weight, mode="fan_out", nonlinearity="relu")
|
|
elif isinstance(m, nn.Linear):
|
|
nn.init.normal_(m.weight, 0, 0.01)
|
|
if m.bias is not None:
|
|
nn.init.constant_(m.bias, 0)
|
|
|
|
def forward(self, x):
|
|
x1 = self.conv1(x)
|
|
x2 = self.conv1_down(x1)
|
|
x2 = F.leaky_relu(x2, 0.1, inplace=True)
|
|
x2 = self.conv2(x2)
|
|
x2 = self.conv2_up(x2)
|
|
x2 = F.leaky_relu(x2, 0.1, inplace=True)
|
|
|
|
x1 = F.pad(x1, (-4, -4, -4, -4))
|
|
x3 = self.conv3(x1 + x2)
|
|
x3 = F.leaky_relu(x3, 0.1, inplace=True)
|
|
z = self.conv_bottom(x3)
|
|
return z
|
|
|
|
def forward_a(self, x):
|
|
x1 = self.conv1(x)
|
|
x2 = self.conv1_down(x1)
|
|
x2 = F.leaky_relu(x2, 0.1, inplace=True)
|
|
x2 = self.conv2.conv(x2)
|
|
return x1, x2
|
|
|
|
def forward_b(self, x1, x2):
|
|
x2 = self.conv2_up(x2)
|
|
x2 = F.leaky_relu(x2, 0.1, inplace=True)
|
|
|
|
x1 = F.pad(x1, (-4, -4, -4, -4))
|
|
x3 = self.conv3(x1 + x2)
|
|
x3 = F.leaky_relu(x3, 0.1, inplace=True)
|
|
z = self.conv_bottom(x3)
|
|
return z
|
|
|
|
|
|
class UNet2(nn.Module):
|
|
def __init__(self, in_channels, out_channels, deconv):
|
|
super(UNet2, self).__init__()
|
|
|
|
self.conv1 = UNetConv(in_channels, 32, 64, se=False)
|
|
self.conv1_down = nn.Conv2d(64, 64, 2, 2, 0)
|
|
self.conv2 = UNetConv(64, 64, 128, se=True)
|
|
self.conv2_down = nn.Conv2d(128, 128, 2, 2, 0)
|
|
self.conv3 = UNetConv(128, 256, 128, se=True)
|
|
self.conv3_up = nn.ConvTranspose2d(128, 128, 2, 2, 0)
|
|
self.conv4 = UNetConv(128, 64, 64, se=True)
|
|
self.conv4_up = nn.ConvTranspose2d(64, 64, 2, 2, 0)
|
|
self.conv5 = nn.Conv2d(64, 64, 3, 1, 0)
|
|
|
|
if deconv:
|
|
self.conv_bottom = nn.ConvTranspose2d(64, out_channels, 4, 2, 3)
|
|
else:
|
|
self.conv_bottom = nn.Conv2d(64, out_channels, 3, 1, 0)
|
|
|
|
for m in self.modules():
|
|
if isinstance(m, (nn.Conv2d, nn.ConvTranspose2d)):
|
|
nn.init.kaiming_normal_(m.weight, mode="fan_out", nonlinearity="relu")
|
|
elif isinstance(m, nn.Linear):
|
|
nn.init.normal_(m.weight, 0, 0.01)
|
|
if m.bias is not None:
|
|
nn.init.constant_(m.bias, 0)
|
|
|
|
def forward(self, x):
|
|
x1 = self.conv1(x)
|
|
x2 = self.conv1_down(x1)
|
|
x2 = F.leaky_relu(x2, 0.1, inplace=True)
|
|
x2 = self.conv2(x2)
|
|
|
|
x3 = self.conv2_down(x2)
|
|
x3 = F.leaky_relu(x3, 0.1, inplace=True)
|
|
x3 = self.conv3(x3)
|
|
x3 = self.conv3_up(x3)
|
|
x3 = F.leaky_relu(x3, 0.1, inplace=True)
|
|
|
|
x2 = F.pad(x2, (-4, -4, -4, -4))
|
|
x4 = self.conv4(x2 + x3)
|
|
x4 = self.conv4_up(x4)
|
|
x4 = F.leaky_relu(x4, 0.1, inplace=True)
|
|
|
|
x1 = F.pad(x1, (-16, -16, -16, -16))
|
|
x5 = self.conv5(x1 + x4)
|
|
x5 = F.leaky_relu(x5, 0.1, inplace=True)
|
|
|
|
z = self.conv_bottom(x5)
|
|
return z
|
|
|
|
def forward_a(self, x):
|
|
x1 = self.conv1(x)
|
|
x2 = self.conv1_down(x1)
|
|
x2 = F.leaky_relu(x2, 0.1, inplace=True)
|
|
x2 = self.conv2.conv(x2)
|
|
return x1, x2
|
|
|
|
def forward_b(self, x2):
|
|
x3 = self.conv2_down(x2)
|
|
x3 = F.leaky_relu(x3, 0.1, inplace=True)
|
|
x3 = self.conv3.conv(x3)
|
|
return x3
|
|
|
|
def forward_c(self, x2, x3):
|
|
x3 = self.conv3_up(x3)
|
|
x3 = F.leaky_relu(x3, 0.1, inplace=True)
|
|
|
|
x2 = F.pad(x2, (-4, -4, -4, -4))
|
|
x4 = self.conv4.conv(x2 + x3)
|
|
return x4
|
|
|
|
def forward_d(self, x1, x4):
|
|
x4 = self.conv4_up(x4)
|
|
x4 = F.leaky_relu(x4, 0.1, inplace=True)
|
|
|
|
x1 = F.pad(x1, (-16, -16, -16, -16))
|
|
x5 = self.conv5(x1 + x4)
|
|
x5 = F.leaky_relu(x5, 0.1, inplace=True)
|
|
|
|
z = self.conv_bottom(x5)
|
|
return z
|
|
|
|
|
|
class UpCunet2x(nn.Module):
|
|
def __init__(self, in_channels=3, out_channels=3):
|
|
super(UpCunet2x, self).__init__()
|
|
self.unet1 = UNet1(in_channels, out_channels, deconv=True)
|
|
self.unet2 = UNet2(in_channels, out_channels, deconv=False)
|
|
|
|
def forward(self, x, tile_mode):
|
|
n, c, h0, w0 = x.shape
|
|
if tile_mode == 0:
|
|
ph = ((h0 - 1) // 2 + 1) * 2
|
|
pw = ((w0 - 1) // 2 + 1) * 2
|
|
x = F.pad(x, (18, 18 + pw - w0, 18, 18 + ph - h0), "reflect")
|
|
x = self.unet1.forward(x)
|
|
x0 = self.unet2.forward(x)
|
|
x1 = F.pad(x, (-20, -20, -20, -20))
|
|
x = torch.add(x0, x1)
|
|
if w0 != pw or h0 != ph:
|
|
x = x[:, :, : h0 * 2, : w0 * 2]
|
|
return x
|
|
elif tile_mode == 1:
|
|
if w0 >= h0:
|
|
crop_size_w = ((w0 - 1) // 4 * 4 + 4) // 2
|
|
crop_size_h = (h0 - 1) // 2 * 2 + 2
|
|
else:
|
|
crop_size_h = ((h0 - 1) // 4 * 4 + 4) // 2
|
|
crop_size_w = (w0 - 1) // 2 * 2 + 2
|
|
crop_size = (crop_size_h, crop_size_w)
|
|
elif tile_mode == 2:
|
|
crop_size = (
|
|
((h0 - 1) // 4 * 4 + 4) // 2,
|
|
((w0 - 1) // 4 * 4 + 4) // 2,
|
|
)
|
|
elif tile_mode == 3:
|
|
crop_size = (
|
|
((h0 - 1) // 6 * 6 + 6) // 3,
|
|
((w0 - 1) // 6 * 6 + 6) // 3,
|
|
)
|
|
elif tile_mode == 4:
|
|
crop_size = (
|
|
((h0 - 1) // 8 * 8 + 8) // 4,
|
|
((w0 - 1) // 8 * 8 + 8) // 4,
|
|
)
|
|
ph = ((h0 - 1) // crop_size[0] + 1) * crop_size[0]
|
|
pw = ((w0 - 1) // crop_size[1] + 1) * crop_size[1]
|
|
x = F.pad(x, (18, 18 + pw - w0, 18, 18 + ph - h0), "reflect")
|
|
n, c, h, w = x.shape
|
|
se_mean0 = torch.zeros((n, 64, 1, 1)).to(x.device)
|
|
if "Half" in x.type():
|
|
se_mean0 = se_mean0.half()
|
|
n_patch = 0
|
|
tmp_dict = {}
|
|
opt_res_dict = {}
|
|
for i in range(0, h - 36, crop_size[0]):
|
|
tmp_dict[i] = {}
|
|
for j in range(0, w - 36, crop_size[1]):
|
|
x_crop = x[:, :, i : i + crop_size[0] + 36, j : j + crop_size[1] + 36]
|
|
n, c1, h1, w1 = x_crop.shape
|
|
tmp0, x_crop = self.unet1.forward_a(x_crop)
|
|
if "Half" in x.type():
|
|
tmp_se_mean = torch.mean(
|
|
x_crop.float(), dim=(2, 3), keepdim=True
|
|
).half()
|
|
else:
|
|
tmp_se_mean = torch.mean(x_crop, dim=(2, 3), keepdim=True)
|
|
se_mean0 += tmp_se_mean
|
|
n_patch += 1
|
|
tmp_dict[i][j] = (tmp0, x_crop)
|
|
se_mean0 /= n_patch
|
|
se_mean1 = torch.zeros((n, 128, 1, 1)).to(x.device)
|
|
if "Half" in x.type():
|
|
se_mean1 = se_mean1.half()
|
|
for i in range(0, h - 36, crop_size[0]):
|
|
for j in range(0, w - 36, crop_size[1]):
|
|
tmp0, x_crop = tmp_dict[i][j]
|
|
x_crop = self.unet1.conv2.seblock.forward_mean(x_crop, se_mean0)
|
|
opt_unet1 = self.unet1.forward_b(tmp0, x_crop)
|
|
tmp_x1, tmp_x2 = self.unet2.forward_a(opt_unet1)
|
|
if "Half" in x.type():
|
|
tmp_se_mean = torch.mean(
|
|
tmp_x2.float(), dim=(2, 3), keepdim=True
|
|
).half()
|
|
else:
|
|
tmp_se_mean = torch.mean(tmp_x2, dim=(2, 3), keepdim=True)
|
|
se_mean1 += tmp_se_mean
|
|
tmp_dict[i][j] = (opt_unet1, tmp_x1, tmp_x2)
|
|
se_mean1 /= n_patch
|
|
se_mean0 = torch.zeros((n, 128, 1, 1)).to(x.device)
|
|
if "Half" in x.type():
|
|
se_mean0 = se_mean0.half()
|
|
for i in range(0, h - 36, crop_size[0]):
|
|
for j in range(0, w - 36, crop_size[1]):
|
|
opt_unet1, tmp_x1, tmp_x2 = tmp_dict[i][j]
|
|
tmp_x2 = self.unet2.conv2.seblock.forward_mean(tmp_x2, se_mean1)
|
|
tmp_x3 = self.unet2.forward_b(tmp_x2)
|
|
if "Half" in x.type():
|
|
tmp_se_mean = torch.mean(
|
|
tmp_x3.float(), dim=(2, 3), keepdim=True
|
|
).half()
|
|
else:
|
|
tmp_se_mean = torch.mean(tmp_x3, dim=(2, 3), keepdim=True)
|
|
se_mean0 += tmp_se_mean
|
|
tmp_dict[i][j] = (opt_unet1, tmp_x1, tmp_x2, tmp_x3)
|
|
se_mean0 /= n_patch
|
|
se_mean1 = torch.zeros((n, 64, 1, 1)).to(x.device)
|
|
if "Half" in x.type():
|
|
se_mean1 = se_mean1.half()
|
|
for i in range(0, h - 36, crop_size[0]):
|
|
for j in range(0, w - 36, crop_size[1]):
|
|
opt_unet1, tmp_x1, tmp_x2, tmp_x3 = tmp_dict[i][j]
|
|
tmp_x3 = self.unet2.conv3.seblock.forward_mean(tmp_x3, se_mean0)
|
|
tmp_x4 = self.unet2.forward_c(tmp_x2, tmp_x3)
|
|
if "Half" in x.type():
|
|
tmp_se_mean = torch.mean(
|
|
tmp_x4.float(), dim=(2, 3), keepdim=True
|
|
).half()
|
|
else:
|
|
tmp_se_mean = torch.mean(tmp_x4, dim=(2, 3), keepdim=True)
|
|
se_mean1 += tmp_se_mean
|
|
tmp_dict[i][j] = (opt_unet1, tmp_x1, tmp_x4)
|
|
se_mean1 /= n_patch
|
|
for i in range(0, h - 36, crop_size[0]):
|
|
opt_res_dict[i] = {}
|
|
for j in range(0, w - 36, crop_size[1]):
|
|
opt_unet1, tmp_x1, tmp_x4 = tmp_dict[i][j]
|
|
tmp_x4 = self.unet2.conv4.seblock.forward_mean(tmp_x4, se_mean1)
|
|
x0 = self.unet2.forward_d(tmp_x1, tmp_x4)
|
|
x1 = F.pad(opt_unet1, (-20, -20, -20, -20))
|
|
x_crop = torch.add(x0, x1)
|
|
opt_res_dict[i][j] = x_crop
|
|
del tmp_dict
|
|
torch.cuda.empty_cache()
|
|
res = torch.zeros((n, c, h * 2 - 72, w * 2 - 72)).to(x.device)
|
|
if "Half" in x.type():
|
|
res = res.half()
|
|
for i in range(0, h - 36, crop_size[0]):
|
|
for j in range(0, w - 36, crop_size[1]):
|
|
res[
|
|
:, :, i * 2 : i * 2 + h1 * 2 - 72, j * 2 : j * 2 + w1 * 2 - 72
|
|
] = opt_res_dict[i][j]
|
|
del opt_res_dict
|
|
torch.cuda.empty_cache()
|
|
if w0 != pw or h0 != ph:
|
|
res = res[:, :, : h0 * 2, : w0 * 2]
|
|
return res
|
|
|
|
|
|
class UpCunet3x(nn.Module):
|
|
def __init__(self, in_channels=3, out_channels=3):
|
|
super(UpCunet3x, self).__init__()
|
|
self.unet1 = UNet1x3(in_channels, out_channels, deconv=True)
|
|
self.unet2 = UNet2(in_channels, out_channels, deconv=False)
|
|
|
|
def forward(self, x, tile_mode):
|
|
n, c, h0, w0 = x.shape
|
|
if tile_mode == 0:
|
|
ph = ((h0 - 1) // 4 + 1) * 4
|
|
pw = ((w0 - 1) // 4 + 1) * 4
|
|
x = F.pad(x, (14, 14 + pw - w0, 14, 14 + ph - h0), "reflect")
|
|
x = self.unet1.forward(x)
|
|
x0 = self.unet2.forward(x)
|
|
x1 = F.pad(x, (-20, -20, -20, -20))
|
|
x = torch.add(x0, x1)
|
|
if w0 != pw or h0 != ph:
|
|
x = x[:, :, : h0 * 3, : w0 * 3]
|
|
return x
|
|
elif tile_mode == 1:
|
|
if w0 >= h0:
|
|
crop_size_w = ((w0 - 1) // 8 * 8 + 8) // 2
|
|
crop_size_h = (h0 - 1) // 4 * 4 + 4
|
|
else:
|
|
crop_size_h = ((h0 - 1) // 8 * 8 + 8) // 2
|
|
crop_size_w = (w0 - 1) // 4 * 4 + 4
|
|
crop_size = (crop_size_h, crop_size_w)
|
|
elif tile_mode == 2:
|
|
crop_size = (
|
|
((h0 - 1) // 8 * 8 + 8) // 2,
|
|
((w0 - 1) // 8 * 8 + 8) // 2,
|
|
)
|
|
elif tile_mode == 3:
|
|
crop_size = (
|
|
((h0 - 1) // 12 * 12 + 12) // 3,
|
|
((w0 - 1) // 12 * 12 + 12) // 3,
|
|
)
|
|
elif tile_mode == 4:
|
|
crop_size = (
|
|
((h0 - 1) // 16 * 16 + 16) // 4,
|
|
((w0 - 1) // 16 * 16 + 16) // 4,
|
|
)
|
|
ph = ((h0 - 1) // crop_size[0] + 1) * crop_size[0]
|
|
pw = ((w0 - 1) // crop_size[1] + 1) * crop_size[1]
|
|
x = F.pad(x, (14, 14 + pw - w0, 14, 14 + ph - h0), "reflect")
|
|
n, c, h, w = x.shape
|
|
se_mean0 = torch.zeros((n, 64, 1, 1)).to(x.device)
|
|
if "Half" in x.type():
|
|
se_mean0 = se_mean0.half()
|
|
n_patch = 0
|
|
tmp_dict = {}
|
|
opt_res_dict = {}
|
|
for i in range(0, h - 28, crop_size[0]):
|
|
tmp_dict[i] = {}
|
|
for j in range(0, w - 28, crop_size[1]):
|
|
x_crop = x[:, :, i : i + crop_size[0] + 28, j : j + crop_size[1] + 28]
|
|
n, c1, h1, w1 = x_crop.shape
|
|
tmp0, x_crop = self.unet1.forward_a(x_crop)
|
|
if "Half" in x.type():
|
|
tmp_se_mean = torch.mean(
|
|
x_crop.float(), dim=(2, 3), keepdim=True
|
|
).half()
|
|
else:
|
|
tmp_se_mean = torch.mean(x_crop, dim=(2, 3), keepdim=True)
|
|
se_mean0 += tmp_se_mean
|
|
n_patch += 1
|
|
tmp_dict[i][j] = (tmp0, x_crop)
|
|
se_mean0 /= n_patch
|
|
se_mean1 = torch.zeros((n, 128, 1, 1)).to(x.device)
|
|
if "Half" in x.type():
|
|
se_mean1 = se_mean1.half()
|
|
for i in range(0, h - 28, crop_size[0]):
|
|
for j in range(0, w - 28, crop_size[1]):
|
|
tmp0, x_crop = tmp_dict[i][j]
|
|
x_crop = self.unet1.conv2.seblock.forward_mean(x_crop, se_mean0)
|
|
opt_unet1 = self.unet1.forward_b(tmp0, x_crop)
|
|
tmp_x1, tmp_x2 = self.unet2.forward_a(opt_unet1)
|
|
if "Half" in x.type():
|
|
tmp_se_mean = torch.mean(
|
|
tmp_x2.float(), dim=(2, 3), keepdim=True
|
|
).half()
|
|
else:
|
|
tmp_se_mean = torch.mean(tmp_x2, dim=(2, 3), keepdim=True)
|
|
se_mean1 += tmp_se_mean
|
|
tmp_dict[i][j] = (opt_unet1, tmp_x1, tmp_x2)
|
|
se_mean1 /= n_patch
|
|
se_mean0 = torch.zeros((n, 128, 1, 1)).to(x.device)
|
|
if "Half" in x.type():
|
|
se_mean0 = se_mean0.half()
|
|
for i in range(0, h - 28, crop_size[0]):
|
|
for j in range(0, w - 28, crop_size[1]):
|
|
opt_unet1, tmp_x1, tmp_x2 = tmp_dict[i][j]
|
|
tmp_x2 = self.unet2.conv2.seblock.forward_mean(tmp_x2, se_mean1)
|
|
tmp_x3 = self.unet2.forward_b(tmp_x2)
|
|
if "Half" in x.type():
|
|
tmp_se_mean = torch.mean(
|
|
tmp_x3.float(), dim=(2, 3), keepdim=True
|
|
).half()
|
|
else:
|
|
tmp_se_mean = torch.mean(tmp_x3, dim=(2, 3), keepdim=True)
|
|
se_mean0 += tmp_se_mean
|
|
tmp_dict[i][j] = (opt_unet1, tmp_x1, tmp_x2, tmp_x3)
|
|
se_mean0 /= n_patch
|
|
se_mean1 = torch.zeros((n, 64, 1, 1)).to(x.device)
|
|
if "Half" in x.type():
|
|
se_mean1 = se_mean1.half()
|
|
for i in range(0, h - 28, crop_size[0]):
|
|
for j in range(0, w - 28, crop_size[1]):
|
|
opt_unet1, tmp_x1, tmp_x2, tmp_x3 = tmp_dict[i][j]
|
|
tmp_x3 = self.unet2.conv3.seblock.forward_mean(tmp_x3, se_mean0)
|
|
tmp_x4 = self.unet2.forward_c(tmp_x2, tmp_x3)
|
|
if "Half" in x.type():
|
|
tmp_se_mean = torch.mean(
|
|
tmp_x4.float(), dim=(2, 3), keepdim=True
|
|
).half()
|
|
else:
|
|
tmp_se_mean = torch.mean(tmp_x4, dim=(2, 3), keepdim=True)
|
|
se_mean1 += tmp_se_mean
|
|
tmp_dict[i][j] = (opt_unet1, tmp_x1, tmp_x4)
|
|
se_mean1 /= n_patch
|
|
for i in range(0, h - 28, crop_size[0]):
|
|
opt_res_dict[i] = {}
|
|
for j in range(0, w - 28, crop_size[1]):
|
|
opt_unet1, tmp_x1, tmp_x4 = tmp_dict[i][j]
|
|
tmp_x4 = self.unet2.conv4.seblock.forward_mean(tmp_x4, se_mean1)
|
|
x0 = self.unet2.forward_d(tmp_x1, tmp_x4)
|
|
x1 = F.pad(opt_unet1, (-20, -20, -20, -20))
|
|
x_crop = torch.add(x0, x1)
|
|
opt_res_dict[i][j] = x_crop
|
|
del tmp_dict
|
|
torch.cuda.empty_cache()
|
|
res = torch.zeros((n, c, h * 3 - 84, w * 3 - 84)).to(x.device)
|
|
if "Half" in x.type():
|
|
res = res.half()
|
|
for i in range(0, h - 28, crop_size[0]):
|
|
for j in range(0, w - 28, crop_size[1]):
|
|
res[
|
|
:, :, i * 3 : i * 3 + h1 * 3 - 84, j * 3 : j * 3 + w1 * 3 - 84
|
|
] = opt_res_dict[i][j]
|
|
del opt_res_dict
|
|
torch.cuda.empty_cache()
|
|
if w0 != pw or h0 != ph:
|
|
res = res[:, :, : h0 * 3, : w0 * 3]
|
|
return res
|
|
|
|
|
|
class UpCunet4x(nn.Module):
|
|
def __init__(self, in_channels=3, out_channels=3):
|
|
super(UpCunet4x, self).__init__()
|
|
self.unet1 = UNet1(in_channels, 64, deconv=True)
|
|
self.unet2 = UNet2(64, 64, deconv=False)
|
|
self.ps = nn.PixelShuffle(2)
|
|
self.conv_final = nn.Conv2d(64, 12, 3, 1, padding=0, bias=True)
|
|
|
|
def forward(self, x, tile_mode):
|
|
n, c, h0, w0 = x.shape
|
|
x00 = x
|
|
if tile_mode == 0:
|
|
ph = ((h0 - 1) // 2 + 1) * 2
|
|
pw = ((w0 - 1) // 2 + 1) * 2
|
|
x = F.pad(x, (19, 19 + pw - w0, 19, 19 + ph - h0), "reflect")
|
|
x = self.unet1.forward(x)
|
|
x0 = self.unet2.forward(x)
|
|
x1 = F.pad(x, (-20, -20, -20, -20))
|
|
x = torch.add(x0, x1)
|
|
x = self.conv_final(x)
|
|
x = F.pad(x, (-1, -1, -1, -1))
|
|
x = self.ps(x)
|
|
if w0 != pw or h0 != ph:
|
|
x = x[:, :, : h0 * 4, : w0 * 4]
|
|
x += F.interpolate(x00, scale_factor=4, mode="nearest")
|
|
return x
|
|
elif tile_mode == 1:
|
|
if w0 >= h0:
|
|
crop_size_w = ((w0 - 1) // 4 * 4 + 4) // 2
|
|
crop_size_h = (h0 - 1) // 2 * 2 + 2
|
|
else:
|
|
crop_size_h = ((h0 - 1) // 4 * 4 + 4) // 2
|
|
crop_size_w = (w0 - 1) // 2 * 2 + 2
|
|
crop_size = (crop_size_h, crop_size_w)
|
|
elif tile_mode == 2:
|
|
crop_size = (
|
|
((h0 - 1) // 4 * 4 + 4) // 2,
|
|
((w0 - 1) // 4 * 4 + 4) // 2,
|
|
)
|
|
elif tile_mode == 3:
|
|
crop_size = (
|
|
((h0 - 1) // 6 * 6 + 6) // 3,
|
|
((w0 - 1) // 6 * 6 + 6) // 3,
|
|
)
|
|
elif tile_mode == 4:
|
|
crop_size = (
|
|
((h0 - 1) // 8 * 8 + 8) // 4,
|
|
((w0 - 1) // 8 * 8 + 8) // 4,
|
|
)
|
|
ph = ((h0 - 1) // crop_size[0] + 1) * crop_size[0]
|
|
pw = ((w0 - 1) // crop_size[1] + 1) * crop_size[1]
|
|
x = F.pad(x, (19, 19 + pw - w0, 19, 19 + ph - h0), "reflect")
|
|
n, c, h, w = x.shape
|
|
se_mean0 = torch.zeros((n, 64, 1, 1)).to(x.device)
|
|
if "Half" in x.type():
|
|
se_mean0 = se_mean0.half()
|
|
n_patch = 0
|
|
tmp_dict = {}
|
|
opt_res_dict = {}
|
|
for i in range(0, h - 38, crop_size[0]):
|
|
tmp_dict[i] = {}
|
|
for j in range(0, w - 38, crop_size[1]):
|
|
x_crop = x[:, :, i : i + crop_size[0] + 38, j : j + crop_size[1] + 38]
|
|
n, c1, h1, w1 = x_crop.shape
|
|
tmp0, x_crop = self.unet1.forward_a(x_crop)
|
|
if "Half" in x.type():
|
|
tmp_se_mean = torch.mean(
|
|
x_crop.float(), dim=(2, 3), keepdim=True
|
|
).half()
|
|
else:
|
|
tmp_se_mean = torch.mean(x_crop, dim=(2, 3), keepdim=True)
|
|
se_mean0 += tmp_se_mean
|
|
n_patch += 1
|
|
tmp_dict[i][j] = (tmp0, x_crop)
|
|
se_mean0 /= n_patch
|
|
se_mean1 = torch.zeros((n, 128, 1, 1)).to(x.device)
|
|
if "Half" in x.type():
|
|
se_mean1 = se_mean1.half()
|
|
for i in range(0, h - 38, crop_size[0]):
|
|
for j in range(0, w - 38, crop_size[1]):
|
|
tmp0, x_crop = tmp_dict[i][j]
|
|
x_crop = self.unet1.conv2.seblock.forward_mean(x_crop, se_mean0)
|
|
opt_unet1 = self.unet1.forward_b(tmp0, x_crop)
|
|
tmp_x1, tmp_x2 = self.unet2.forward_a(opt_unet1)
|
|
if "Half" in x.type():
|
|
tmp_se_mean = torch.mean(
|
|
tmp_x2.float(), dim=(2, 3), keepdim=True
|
|
).half()
|
|
else:
|
|
tmp_se_mean = torch.mean(tmp_x2, dim=(2, 3), keepdim=True)
|
|
se_mean1 += tmp_se_mean
|
|
tmp_dict[i][j] = (opt_unet1, tmp_x1, tmp_x2)
|
|
se_mean1 /= n_patch
|
|
se_mean0 = torch.zeros((n, 128, 1, 1)).to(x.device)
|
|
if "Half" in x.type():
|
|
se_mean0 = se_mean0.half()
|
|
for i in range(0, h - 38, crop_size[0]):
|
|
for j in range(0, w - 38, crop_size[1]):
|
|
opt_unet1, tmp_x1, tmp_x2 = tmp_dict[i][j]
|
|
tmp_x2 = self.unet2.conv2.seblock.forward_mean(tmp_x2, se_mean1)
|
|
tmp_x3 = self.unet2.forward_b(tmp_x2)
|
|
if "Half" in x.type():
|
|
tmp_se_mean = torch.mean(
|
|
tmp_x3.float(), dim=(2, 3), keepdim=True
|
|
).half()
|
|
else:
|
|
tmp_se_mean = torch.mean(tmp_x3, dim=(2, 3), keepdim=True)
|
|
se_mean0 += tmp_se_mean
|
|
tmp_dict[i][j] = (opt_unet1, tmp_x1, tmp_x2, tmp_x3)
|
|
se_mean0 /= n_patch
|
|
se_mean1 = torch.zeros((n, 64, 1, 1)).to(x.device)
|
|
if "Half" in x.type():
|
|
se_mean1 = se_mean1.half()
|
|
for i in range(0, h - 38, crop_size[0]):
|
|
for j in range(0, w - 38, crop_size[1]):
|
|
opt_unet1, tmp_x1, tmp_x2, tmp_x3 = tmp_dict[i][j]
|
|
tmp_x3 = self.unet2.conv3.seblock.forward_mean(tmp_x3, se_mean0)
|
|
tmp_x4 = self.unet2.forward_c(tmp_x2, tmp_x3)
|
|
if "Half" in x.type():
|
|
tmp_se_mean = torch.mean(
|
|
tmp_x4.float(), dim=(2, 3), keepdim=True
|
|
).half()
|
|
else:
|
|
tmp_se_mean = torch.mean(tmp_x4, dim=(2, 3), keepdim=True)
|
|
se_mean1 += tmp_se_mean
|
|
tmp_dict[i][j] = (opt_unet1, tmp_x1, tmp_x4)
|
|
se_mean1 /= n_patch
|
|
for i in range(0, h - 38, crop_size[0]):
|
|
opt_res_dict[i] = {}
|
|
for j in range(0, w - 38, crop_size[1]):
|
|
opt_unet1, tmp_x1, tmp_x4 = tmp_dict[i][j]
|
|
tmp_x4 = self.unet2.conv4.seblock.forward_mean(tmp_x4, se_mean1)
|
|
x0 = self.unet2.forward_d(tmp_x1, tmp_x4)
|
|
x1 = F.pad(opt_unet1, (-20, -20, -20, -20))
|
|
x_crop = torch.add(x0, x1)
|
|
x_crop = self.conv_final(x_crop)
|
|
x_crop = F.pad(x_crop, (-1, -1, -1, -1))
|
|
x_crop = self.ps(x_crop)
|
|
opt_res_dict[i][j] = x_crop
|
|
del tmp_dict
|
|
torch.cuda.empty_cache()
|
|
res = torch.zeros((n, c, h * 4 - 152, w * 4 - 152)).to(x.device)
|
|
if "Half" in x.type():
|
|
res = res.half()
|
|
for i in range(0, h - 38, crop_size[0]):
|
|
for j in range(0, w - 38, crop_size[1]):
|
|
|
|
res[
|
|
:, :, i * 4 : i * 4 + h1 * 4 - 152, j * 4 : j * 4 + w1 * 4 - 152
|
|
] = opt_res_dict[i][j]
|
|
del opt_res_dict
|
|
torch.cuda.empty_cache()
|
|
if w0 != pw or h0 != ph:
|
|
res = res[:, :, : h0 * 4, : w0 * 4]
|
|
res += F.interpolate(x00, scale_factor=4, mode="nearest")
|
|
return res
|
|
|
|
|
|
models: Dict[str, Type[nn.Module]] = {
|
|
obj.__name__: obj
|
|
for obj in globals().values()
|
|
if isinstance(obj, type) and issubclass(obj, nn.Module)
|
|
}
|
|
|
|
|
|
class RealWaifuUpScaler:
|
|
def __init__(self, scale: int, weight_path: str, half: bool, device: str):
|
|
weight = torch.load(weight_path, map_location=device)
|
|
self.model = models[f"UpCunet{scale}x"]()
|
|
|
|
if half == True:
|
|
self.model = self.model.half().to(device)
|
|
else:
|
|
self.model = self.model.to(device)
|
|
|
|
self.model.load_state_dict(weight, strict=True)
|
|
self.model.eval()
|
|
|
|
self.half = half
|
|
self.device = device
|
|
|
|
def np2tensor(self, np_frame):
|
|
if self.half == False:
|
|
return (
|
|
torch.from_numpy(np.transpose(np_frame, (2, 0, 1)))
|
|
.unsqueeze(0)
|
|
.to(self.device)
|
|
.float()
|
|
/ 255
|
|
)
|
|
else:
|
|
return (
|
|
torch.from_numpy(np.transpose(np_frame, (2, 0, 1)))
|
|
.unsqueeze(0)
|
|
.to(self.device)
|
|
.half()
|
|
/ 255
|
|
)
|
|
|
|
def tensor2np(self, tensor):
|
|
if self.half == False:
|
|
return np.transpose(
|
|
(tensor.data.squeeze() * 255.0)
|
|
.round()
|
|
.clamp_(0, 255)
|
|
.byte()
|
|
.cpu()
|
|
.numpy(),
|
|
(1, 2, 0),
|
|
)
|
|
else:
|
|
return np.transpose(
|
|
(tensor.data.squeeze().float() * 255.0)
|
|
.round()
|
|
.clamp_(0, 255)
|
|
.byte()
|
|
.cpu()
|
|
.numpy(),
|
|
(1, 2, 0),
|
|
)
|
|
|
|
def __call__(self, frame, tile_mode):
|
|
with torch.no_grad():
|
|
tensor = self.np2tensor(frame)
|
|
result = self.tensor2np(self.model(tensor, tile_mode))
|
|
return result
|
|
|
|
|
|
input_image = inputs.File(label="Input image")
|
|
half_precision = inputs.Checkbox(
|
|
label="Half precision (NOT work for CPU)", default=False
|
|
)
|
|
model_weight = inputs.Dropdown(sorted(AVALIABLE_WEIGHTS), label="Choice model weight")
|
|
tile_mode = inputs.Radio([mode.name for mode in TileMode], label="Output tile mode")
|
|
|
|
output_image = outputs.Image(label="Output image preview")
|
|
output_file = outputs.File(label="Output image file")
|
|
|
|
|
|
def main(file: IO[bytes], half: bool, weight: str, tile: str):
|
|
scale = next(mode.value for mode in ScaleMode if weight.startswith(mode.name))
|
|
upscaler = RealWaifuUpScaler(
|
|
scale, weight_path=str(AVALIABLE_WEIGHTS[weight]), half=half, device=DEVICE
|
|
)
|
|
|
|
frame = cv2.cvtColor(cv2.imread(file.name), cv2.COLOR_BGR2RGB)
|
|
result = cv2.cvtColor(upscaler(frame, TileMode[tile]), cv2.COLOR_RGB2BGR)
|
|
|
|
_, ext = os.path.splitext(file.name)
|
|
tempfile = mktemp(suffix=ext)
|
|
cv2.imwrite(tempfile, result)
|
|
return tempfile, tempfile
|
|
|
|
|
|
interface = Interface(
|
|
main,
|
|
inputs=[input_image, half_precision, model_weight, tile_mode],
|
|
outputs=[output_image, output_file],
|
|
)
|
|
interface.launch()
|
|
|