JairamKanna commited on
Commit
40ffc7e
·
1 Parent(s): d27ff0e

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +49 -0
README.md ADDED
@@ -0,0 +1,49 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - ta
4
+ metrics:
5
+ - wer
6
+ library_name: transformers
7
+ pipeline_tag: automatic-speech-recognition
8
+ ---
9
+ # Model Card for Model ID
10
+
11
+ <!-- Provide a quick summary of what the model is/does. -->
12
+
13
+ This is the fine-tuned version of whisper-large-v2 model for Tamil language.
14
+
15
+
16
+ #### Training Hyperparameters
17
+
18
+ - **Training regime:** [More Information Needed] <training_args = Seq2SeqTrainingArguments(
19
+ output_dir="./pretrainedwhisper-medium-native-v2", # change to a repo name of your choice
20
+ per_device_train_batch_size=4,
21
+ gradient_accumulation_steps=1, # increase by 2x for every 2x decrease in batch size
22
+ learning_rate=1e-5,
23
+ warmup_steps=200,
24
+ max_steps=2000,
25
+ gradient_checkpointing=True,
26
+ fp16=True,
27
+ evaluation_strategy="steps",
28
+ per_device_eval_batch_size=8,
29
+ predict_with_generate=True,
30
+ generation_max_length=225,
31
+ save_steps=500,
32
+ eval_steps=500,
33
+ logging_steps=25,
34
+ report_to=["tensorboard"],
35
+ load_best_model_at_end=True,
36
+ metric_for_best_model="wer",
37
+ greater_is_better=False,
38
+ push_to_hub=True,
39
+ optim="adamw_bnb_8bit"
40
+ )>
41
+
42
+
43
+
44
+ ### Model Architecture and Objective
45
+
46
+ The model follows the whisper architecture with the encoder-decoder part. Where the encoder used to create the embeddings from the speech input and the decoder used to give the textual outputs.
47
+
48
+
49
+