Replace gh readme with model card
Browse files
README.md
CHANGED
|
@@ -1,330 +1,200 @@
|
|
| 1 |
-
|
| 2 |
-
|
| 3 |
-
|
| 4 |
-
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
-
|
| 12 |
-
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
-
|
| 19 |
-
|
| 20 |
-
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
3.
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
## Installation
|
| 39 |
-
|
| 40 |
-
### Prerequisites
|
| 41 |
-
|
| 42 |
-
- Python 3.8+
|
| 43 |
-
- PyTorch (CPU or GPU)
|
| 44 |
-
- CUDA (optional, for GPU training)
|
| 45 |
-
|
| 46 |
-
### Setup
|
| 47 |
-
|
| 48 |
-
1. Clone or navigate to this repository:
|
| 49 |
-
|
| 50 |
-
```bash
|
| 51 |
-
cd auslegal-slm
|
| 52 |
-
```
|
| 53 |
-
|
| 54 |
-
2. Create a virtual environment (recommended):
|
| 55 |
-
|
| 56 |
-
```bash
|
| 57 |
-
python3 -m venv venv
|
| 58 |
-
source venv/bin/activate # On Windows: venv\Scripts\activate
|
| 59 |
-
```
|
| 60 |
-
|
| 61 |
-
3. Install dependencies:
|
| 62 |
-
|
| 63 |
-
```bash
|
| 64 |
-
pip install -r requirements.txt
|
| 65 |
-
```
|
| 66 |
-
|
| 67 |
-
## Usage
|
| 68 |
-
|
| 69 |
-
### Step 0: Clean Data Files (One-Time)
|
| 70 |
-
|
| 71 |
-
Clean the raw legal documents by removing metadata headers and irrelevant content:
|
| 72 |
-
|
| 73 |
-
```bash
|
| 74 |
-
python clean_data.py
|
| 75 |
-
```
|
| 76 |
-
|
| 77 |
-
This script:
|
| 78 |
-
|
| 79 |
-
- Processes all `.txt` files in the `data/` directory
|
| 80 |
-
- Strips metadata headers (URL, scraped date, separators)
|
| 81 |
-
- Removes navigation/UI elements and irrelevant text
|
| 82 |
-
- Cleans and normalizes whitespace
|
| 83 |
-
- Saves cleaned versions back to the same files
|
| 84 |
-
|
| 85 |
-
**Note**: This is a one-time operation. Once files are cleaned, you don't need to run this again unless you scrape new data.
|
| 86 |
-
|
| 87 |
-
### Step 1: Prepare Data
|
| 88 |
-
|
| 89 |
-
Preprocess the cleaned legal documents for training:
|
| 90 |
|
| 91 |
-
|
| 92 |
-
python prepare_data.py
|
| 93 |
-
```
|
| 94 |
|
| 95 |
-
This
|
| 96 |
|
| 97 |
-
|
| 98 |
-
- Tokenizes documents into fixed-length sequences (512 tokens)
|
| 99 |
-
- Splits into training (90%) and validation (10%) sets
|
| 100 |
-
- Saves preprocessed data to `preprocessed_data/`
|
| 101 |
|
| 102 |
-
|
| 103 |
|
| 104 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 105 |
|
| 106 |
-
|
| 107 |
|
| 108 |
-
|
| 109 |
-
python train_slm.py
|
| 110 |
-
```
|
| 111 |
|
| 112 |
-
|
| 113 |
|
| 114 |
-
-
|
| 115 |
-
- Learning rate: 2e-5
|
| 116 |
-
- Batch size: 4 (effective: 16 with gradient accumulation)
|
| 117 |
-
- Max sequence length: 512 tokens
|
| 118 |
-
- Optimizer: AdamW with warmup
|
| 119 |
|
| 120 |
-
**
|
|
|
|
|
|
|
|
|
|
|
|
|
| 121 |
|
| 122 |
-
|
| 123 |
|
| 124 |
-
|
| 125 |
-
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 126 |
|
| 127 |
-
|
|
|
|
|
|
|
| 128 |
|
| 129 |
-
|
| 130 |
|
| 131 |
-
|
| 132 |
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
|
|
|
|
|
|
|
| 136 |
|
| 137 |
-
|
| 138 |
|
| 139 |
-
|
| 140 |
|
| 141 |
-
|
| 142 |
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
|
|
|
|
| 146 |
|
| 147 |
-
|
| 148 |
|
| 149 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 150 |
|
| 151 |
-
|
| 152 |
-
python query_slm.py \
|
| 153 |
-
--question "Your question here" \
|
| 154 |
-
--temperature 0.3 \
|
| 155 |
-
--max-length 300
|
| 156 |
-
```
|
| 157 |
|
| 158 |
-
|
| 159 |
|
| 160 |
-
|
| 161 |
-
- `--question`: Single question to ask
|
| 162 |
-
- `--temperature`: Sampling temperature, 0.0-1.0 (lower = more deterministic, default: 0.4)
|
| 163 |
-
- `--max-length`: Maximum response length in tokens (default: 250)
|
| 164 |
|
| 165 |
-
|
| 166 |
|
| 167 |
-
|
| 168 |
|
| 169 |
-
|
| 170 |
|
| 171 |
-
|
| 172 |
-
URL: https://www.austlii.edu.au/...
|
| 173 |
-
Scraped: YYYY-MM-DD HH:MM:SS
|
| 174 |
-
================================================================================
|
| 175 |
|
| 176 |
-
|
| 177 |
-
```
|
| 178 |
|
| 179 |
-
|
| 180 |
|
| 181 |
-
|
|
|
|
|
|
|
|
|
|
| 182 |
|
| 183 |
-
|
| 184 |
-
- **Vocabulary size**: 50,257 tokens
|
| 185 |
-
- **Special tokens**: `<|endoftext|>` (EOS), padding token set to EOS
|
| 186 |
-
- **Sequence length**: 512 tokens (fixed)
|
| 187 |
-
- **Sliding window**: 256 token stride (50% overlap)
|
| 188 |
|
| 189 |
-
|
|
|
|
|
|
|
|
|
|
| 190 |
|
| 191 |
-
|
| 192 |
-
- **Parameters**: ~82M (DistilGPT2)
|
| 193 |
-
- **Layers**: 6 transformer decoder blocks
|
| 194 |
-
- **Hidden size**: 768
|
| 195 |
-
- **Attention heads**: 12
|
| 196 |
-
- **Max position embeddings**: 1024
|
| 197 |
|
| 198 |
-
###
|
| 199 |
|
| 200 |
```python
|
| 201 |
-
|
| 202 |
-
Objective: Causal Language Modeling (CLM)
|
| 203 |
-
Loss: Cross-entropy
|
| 204 |
-
Optimizer: AdamW
|
| 205 |
-
Learning rate: 2e-5
|
| 206 |
-
Learning rate schedule: Linear warmup + cosine decay
|
| 207 |
-
Batch size: 4 (per device)
|
| 208 |
-
Gradient accumulation: 4 steps (effective batch: 16)
|
| 209 |
-
Epochs: 5
|
| 210 |
-
Warmup steps: 100
|
| 211 |
-
Max sequence length: 512 tokens
|
| 212 |
-
Mixed precision: FP16 (if GPU available)
|
| 213 |
-
```
|
| 214 |
|
| 215 |
-
|
|
|
|
|
|
|
| 216 |
|
| 217 |
-
|
| 218 |
-
|
| 219 |
-
|
| 220 |
-
|
| 221 |
-
|
| 222 |
-
|
| 223 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 224 |
```
|
| 225 |
|
| 226 |
-
|
| 227 |
-
|
| 228 |
-
### Hallucination Mitigation
|
| 229 |
-
|
| 230 |
-
The following strategies are employed to reduce hallucinations and off-domain content:
|
| 231 |
-
|
| 232 |
-
- **Domain fine-tuning**: Model is fine-tuned only on the legal corpus (though base model retains general pre-training)
|
| 233 |
-
- **Low temperature**: 0.3-0.5 during inference to reduce randomness
|
| 234 |
-
- **Capped generation length**: Limits response length to prevent rambling
|
| 235 |
-
- **Prompt engineering**: Prompts explicitly reference "Australian legal documents"
|
| 236 |
-
- **Manual monitoring**: Test prompts should be used to detect off-domain or invented content
|
| 237 |
|
| 238 |
-
**
|
|
|
|
|
|
|
|
|
|
|
|
|
| 239 |
|
| 240 |
-
|
| 241 |
-
- Mix general knowledge with legal domain knowledge
|
| 242 |
-
- Produce responses that don't directly cite the training corpus
|
| 243 |
|
| 244 |
-
|
| 245 |
|
| 246 |
-
|
|
|
|
|
|
|
|
|
|
| 247 |
|
| 248 |
-
|
| 249 |
-
- **Coverage**: The model may not have seen all areas of Australian law
|
| 250 |
-
- **Temporal**: Documents reflect the state of law at scraping time; laws may have changed
|
| 251 |
|
| 252 |
-
|
|
|
|
|
|
|
|
|
|
| 253 |
|
| 254 |
-
|
| 255 |
-
- **Generalization**: May overfit to specific documents or underperform on unseen legal topics
|
| 256 |
-
- **No citations**: Model doesn't explicitly cite sources (unlike RAG systems)
|
| 257 |
-
|
| 258 |
-
## Evaluation
|
| 259 |
-
|
| 260 |
-
Training metrics are saved to `models/legal_slm/training_metrics.json`:
|
| 261 |
-
|
| 262 |
-
```json
|
| 263 |
-
{
|
| 264 |
-
"training_loss": 2.3456,
|
| 265 |
-
"eval_loss": 2.4567,
|
| 266 |
-
"perplexity": 11.67,
|
| 267 |
-
"num_epochs": 5,
|
| 268 |
-
"learning_rate": 2e-5,
|
| 269 |
-
"batch_size": 4
|
| 270 |
-
}
|
| 271 |
-
```
|
| 272 |
-
|
| 273 |
-
**Perplexity**: Lower is better. Measures how well the model predicts the next token. A perplexity of ~10-15 is reasonable for domain-adapted models.
|
| 274 |
-
|
| 275 |
-
## Future Enhancements
|
| 276 |
-
|
| 277 |
-
### Comparison Models
|
| 278 |
-
|
| 279 |
-
For learning and comparison purposes, additional training approaches can be implemented:
|
| 280 |
-
|
| 281 |
-
- **N-gram model** (`train_ngram.py`): Classic n-gram language model trained from scratch
|
| 282 |
-
- **Char-RNN** (`train_charrnn.py`): Character-level LSTM/GRU trained from scratch
|
| 283 |
-
- **Tiny transformer from scratch**: Fully custom transformer trained only on legal corpus
|
| 284 |
-
|
| 285 |
-
These can be compared on:
|
| 286 |
-
|
| 287 |
-
- Training time
|
| 288 |
-
- Validation loss/perplexity
|
| 289 |
-
- Qualitative sample quality
|
| 290 |
-
- Memory requirements
|
| 291 |
-
|
| 292 |
-
### Hybrid Approaches
|
| 293 |
-
|
| 294 |
-
- **SLM + RAG**: Combine fine-tuned SLM with retrieval over the same corpus for stricter factual grounding
|
| 295 |
-
- **LoRA fine-tuning**: More parameter-efficient fine-tuning approach
|
| 296 |
-
- **Gradient checkpointing**: Reduce memory usage for larger batch sizes
|
| 297 |
-
|
| 298 |
-
## File Structure
|
| 299 |
|
| 300 |
-
|
| 301 |
-
auslegal-slm/
|
| 302 |
-
├── data/ # Legal documents (scraped, cleaned)
|
| 303 |
-
├── preprocessed_data/ # Tokenized training data
|
| 304 |
-
│ ├── train_data.json
|
| 305 |
-
│ └── val_data.json
|
| 306 |
-
├── models/ # Trained models
|
| 307 |
-
│ └── legal_slm/ # Fine-tuned DistilGPT2
|
| 308 |
-
│ ├── config.json
|
| 309 |
-
│ ├── pytorch_model.bin
|
| 310 |
-
│ ├── tokenizer_config.json
|
| 311 |
-
│ ├── vocab.json
|
| 312 |
-
│ ├── merges.txt
|
| 313 |
-
│ └── training_metrics.json
|
| 314 |
-
├── scraper/ # Data collection tools
|
| 315 |
-
│ ├── scraper.py # Legal document scraper
|
| 316 |
-
│ └── requirements.txt # Scraper dependencies
|
| 317 |
-
├── clean_data.py # One-time data cleaning script
|
| 318 |
-
├── prepare_data.py # Data preparation script
|
| 319 |
-
├── train_slm.py # Training script
|
| 320 |
-
├── query_slm.py # Query interface
|
| 321 |
-
├── requirements.txt # SLM dependencies
|
| 322 |
-
└── README.md # This file
|
| 323 |
-
```
|
| 324 |
|
| 325 |
## Citation
|
| 326 |
|
| 327 |
-
If you use this
|
| 328 |
|
| 329 |
```bibtex
|
| 330 |
@software{auslegal_slm,
|
|
@@ -338,5 +208,10 @@ If you use this code or model, please cite:
|
|
| 338 |
## Acknowledgments
|
| 339 |
|
| 340 |
- Legal documents scraped from [AustLII](https://www.austlii.edu.au/)
|
| 341 |
-
-
|
| 342 |
- Built with [Transformers](https://huggingface.co/docs/transformers) library
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
language:
|
| 3 |
+
- en
|
| 4 |
+
tags:
|
| 5 |
+
- legal
|
| 6 |
+
- australia
|
| 7 |
+
- law
|
| 8 |
+
- causal-lm
|
| 9 |
+
- text-generation
|
| 10 |
+
- domain-adapted
|
| 11 |
+
- slm
|
| 12 |
+
- distilgpt2
|
| 13 |
+
license: mit
|
| 14 |
+
base_model: distilgpt2
|
| 15 |
+
library_name: transformers
|
| 16 |
+
pipeline_tag: text-generation
|
| 17 |
+
datasets:
|
| 18 |
+
- custom
|
| 19 |
+
metrics:
|
| 20 |
+
- perplexity
|
| 21 |
+
model-index:
|
| 22 |
+
- name: auslegal-slm
|
| 23 |
+
results:
|
| 24 |
+
- task:
|
| 25 |
+
type: text-generation
|
| 26 |
+
dataset:
|
| 27 |
+
name: Australian Legal Corpus (AustLII)
|
| 28 |
+
type: custom
|
| 29 |
+
metrics:
|
| 30 |
+
- name: Perplexity
|
| 31 |
+
type: perplexity
|
| 32 |
+
value: 24.34
|
| 33 |
+
- name: Validation Loss
|
| 34 |
+
type: loss
|
| 35 |
+
value: 3.19
|
| 36 |
+
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 37 |
|
| 38 |
+
# Australian Legal Small Language Model (SLM)
|
|
|
|
|
|
|
| 39 |
|
| 40 |
+
A domain-specific Small Language Model fine-tuned on Australian legal documents from AustLII. This model is based on DistilGPT2 and has been adapted to generate text in the style of Australian legal documents.
|
| 41 |
|
| 42 |
+
## Model Details
|
|
|
|
|
|
|
|
|
|
| 43 |
|
| 44 |
+
### Model Description
|
| 45 |
|
| 46 |
+
- **Model type**: GPT-2 (Transformer decoder)
|
| 47 |
+
- **Architecture**: DistilGPT2 fine-tuned on Australian legal corpus
|
| 48 |
+
- **Parameters**: ~82M
|
| 49 |
+
- **Language**: English (Australian legal domain)
|
| 50 |
+
- **License**: MIT
|
| 51 |
|
| 52 |
+
### Base Model
|
| 53 |
|
| 54 |
+
This model is a fine-tune of [distilgpt2](https://huggingface.co/distilgpt2), a distilled version of GPT-2 with 82M parameters.
|
|
|
|
|
|
|
| 55 |
|
| 56 |
+
### Training Data
|
| 57 |
|
| 58 |
+
The model was fine-tuned on a corpus of Australian legal documents scraped from [AustLII](https://www.austlii.edu.au/). The training corpus consists of legal cases, legislation, and other legal documents from Australian jurisdictions.
|
|
|
|
|
|
|
|
|
|
|
|
|
| 59 |
|
| 60 |
+
**Data Processing**:
|
| 61 |
+
- Documents were cleaned to remove metadata headers
|
| 62 |
+
- Tokenized using GPT-2 tokenizer with a maximum sequence length of 512 tokens
|
| 63 |
+
- Split into training (90%) and validation (10%) sets
|
| 64 |
+
- Used sliding window approach with 256 token stride for sequence creation
|
| 65 |
|
| 66 |
+
### Training Procedure
|
| 67 |
|
| 68 |
+
**Training Hyperparameters**:
|
| 69 |
+
- **Training regime**: Fine-tuning (not from scratch)
|
| 70 |
+
- **Epochs**: 1 (as per training metrics)
|
| 71 |
+
- **Learning rate**: 2e-5
|
| 72 |
+
- **Batch size**: 4 (per device)
|
| 73 |
+
- **Gradient accumulation steps**: 1
|
| 74 |
+
- **Max sequence length**: 512 tokens
|
| 75 |
+
- **Optimizer**: AdamW
|
| 76 |
+
- **Warmup steps**: 100
|
| 77 |
+
- **Mixed precision**: FP16 (when GPU available)
|
| 78 |
|
| 79 |
+
**Training Infrastructure**:
|
| 80 |
+
- Framework: PyTorch with Hugging Face Transformers
|
| 81 |
+
- Hardware: CPU/GPU compatible
|
| 82 |
|
| 83 |
+
## Evaluation Results
|
| 84 |
|
| 85 |
+
### Metrics
|
| 86 |
|
| 87 |
+
| Metric | Value |
|
| 88 |
+
|--------|-------|
|
| 89 |
+
| Validation Loss | 3.19 |
|
| 90 |
+
| Perplexity | 24.34 |
|
| 91 |
+
| Training Loss | 3.29 |
|
| 92 |
|
| 93 |
+
**Note**: Lower perplexity indicates better performance. A perplexity of ~24 is reasonable for a domain-adapted model of this size.
|
| 94 |
|
| 95 |
+
## Intended Use
|
| 96 |
|
| 97 |
+
### Direct Use
|
| 98 |
|
| 99 |
+
This model is intended for:
|
| 100 |
+
- **Research and educational purposes**: Exploring domain-specific language modeling
|
| 101 |
+
- **Legal text generation**: Generating text in the style of Australian legal documents
|
| 102 |
+
- **Domain adaptation experiments**: As a baseline for legal domain language models
|
| 103 |
|
| 104 |
+
### Out-of-Scope Use
|
| 105 |
|
| 106 |
+
⚠️ **This model should NOT be used for**:
|
| 107 |
+
- Legal advice or legal decision-making
|
| 108 |
+
- Production legal applications without additional safeguards
|
| 109 |
+
- Any application requiring guaranteed factual accuracy
|
| 110 |
+
- Replacing professional legal research or consultation
|
| 111 |
|
| 112 |
+
## Limitations and Bias
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 113 |
|
| 114 |
+
### Known Limitations
|
| 115 |
|
| 116 |
+
1. **Hallucination Risk**: The model may generate plausible-sounding but incorrect legal information. Fine-tuning reduces but does not eliminate hallucinations.
|
|
|
|
|
|
|
|
|
|
| 117 |
|
| 118 |
+
2. **Limited Coverage**: Training on a relatively small corpus (~10,000+ documents) means the model may not have seen all areas of Australian law.
|
| 119 |
|
| 120 |
+
3. **Temporal Limitations**: Documents reflect the state of law at scraping time; laws may have changed since training.
|
| 121 |
|
| 122 |
+
4. **Context Window**: Limited to 512 tokens, restricting the amount of context the model can consider.
|
| 123 |
|
| 124 |
+
5. **No Citations**: The model doesn't explicitly cite sources (unlike RAG systems).
|
|
|
|
|
|
|
|
|
|
| 125 |
|
| 126 |
+
6. **Generalization**: May overfit to specific documents or underperform on unseen legal topics.
|
|
|
|
| 127 |
|
| 128 |
+
### Bias Considerations
|
| 129 |
|
| 130 |
+
- The model inherits biases from both the base model (DistilGPT2) and the training corpus
|
| 131 |
+
- Legal documents may reflect historical biases present in the legal system
|
| 132 |
+
- The model may reproduce or amplify biases found in the training data
|
| 133 |
+
- Users should be aware that legal language and concepts may not be neutral
|
| 134 |
|
| 135 |
+
### Ethical Considerations
|
|
|
|
|
|
|
|
|
|
|
|
|
| 136 |
|
| 137 |
+
- **Not for Legal Advice**: This model is a research tool and should not be used to provide legal advice
|
| 138 |
+
- **Factual Accuracy**: Generated content should be verified against authoritative legal sources
|
| 139 |
+
- **Bias Awareness**: Users should be aware of potential biases in generated content
|
| 140 |
+
- **Responsible Use**: Should be used responsibly and with appropriate safeguards
|
| 141 |
|
| 142 |
+
## How to Use
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 143 |
|
| 144 |
+
### Basic Usage
|
| 145 |
|
| 146 |
```python
|
| 147 |
+
from transformers import GPT2LMHeadModel, GPT2Tokenizer
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 148 |
|
| 149 |
+
# Load model and tokenizer
|
| 150 |
+
model = GPT2LMHeadModel.from_pretrained("JamesANZ/auslegal-slm")
|
| 151 |
+
tokenizer = GPT2Tokenizer.from_pretrained("JamesANZ/auslegal-slm")
|
| 152 |
|
| 153 |
+
# Generate text
|
| 154 |
+
prompt = "In Australian law, negligence is defined as"
|
| 155 |
+
inputs = tokenizer.encode(prompt, return_tensors="pt")
|
| 156 |
+
outputs = model.generate(
|
| 157 |
+
inputs,
|
| 158 |
+
max_length=250,
|
| 159 |
+
temperature=0.4,
|
| 160 |
+
do_sample=True,
|
| 161 |
+
pad_token_id=tokenizer.eos_token_id
|
| 162 |
+
)
|
| 163 |
+
generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 164 |
+
print(generated_text)
|
| 165 |
```
|
| 166 |
|
| 167 |
+
### Recommended Generation Parameters
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 168 |
|
| 169 |
+
- **Temperature**: 0.3-0.5 (lower = more deterministic, reduces hallucinations)
|
| 170 |
+
- **Max length**: 250 tokens (prevents rambling)
|
| 171 |
+
- **Top-p (nucleus)**: 0.9
|
| 172 |
+
- **Top-k**: 50
|
| 173 |
+
- **Repetition penalty**: 1.2
|
| 174 |
|
| 175 |
+
## Training Details
|
|
|
|
|
|
|
| 176 |
|
| 177 |
+
### Training Data
|
| 178 |
|
| 179 |
+
- **Source**: AustLII (Australasian Legal Information Institute)
|
| 180 |
+
- **Document count**: ~10,000+ legal documents
|
| 181 |
+
- **Content types**: Legal cases, legislation, legal commentary
|
| 182 |
+
- **Jurisdictions**: Australian federal and state jurisdictions
|
| 183 |
|
| 184 |
+
### Preprocessing
|
|
|
|
|
|
|
| 185 |
|
| 186 |
+
1. **Data Cleaning**: Removed metadata headers, navigation elements, and irrelevant text
|
| 187 |
+
2. **Tokenization**: GPT-2 BPE tokenizer with vocabulary size of 50,257 tokens
|
| 188 |
+
3. **Sequence Creation**: Sliding window with 512 token max length and 256 token stride
|
| 189 |
+
4. **Train/Val Split**: 90% training, 10% validation
|
| 190 |
|
| 191 |
+
### Training Configuration
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 192 |
|
| 193 |
+
See the main repository README for detailed training configuration and code.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 194 |
|
| 195 |
## Citation
|
| 196 |
|
| 197 |
+
If you use this model, please cite:
|
| 198 |
|
| 199 |
```bibtex
|
| 200 |
@software{auslegal_slm,
|
|
|
|
| 208 |
## Acknowledgments
|
| 209 |
|
| 210 |
- Legal documents scraped from [AustLII](https://www.austlii.edu.au/)
|
| 211 |
+
- Base model: [DistilGPT2](https://huggingface.co/distilgpt2) by Hugging Face
|
| 212 |
- Built with [Transformers](https://huggingface.co/docs/transformers) library
|
| 213 |
+
|
| 214 |
+
## Model Card Contact
|
| 215 |
+
|
| 216 |
+
For questions or issues, please open an issue in the [repository](https://github.com/JamesANZ/auslegal-slm).
|
| 217 |
+
|