JamesOwers commited on
Commit
23e3909
·
1 Parent(s): 3bc40a9

Upload PPO LunarLander-v2 trained agent

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 260.83 +/- 23.95
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f5156f5a820>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f5156f5a8b0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f5156f5a940>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f5156f5a9d0>", "_build": "<function ActorCriticPolicy._build at 0x7f5156f5aa60>", "forward": "<function ActorCriticPolicy.forward at 0x7f5156f5aaf0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f5156f5ab80>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f5156f5ac10>", "_predict": "<function ActorCriticPolicy._predict at 0x7f5156f5aca0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f5156f5ad30>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f5156f5adc0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f5156f5ae50>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f5156f55900>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1674116697140013271, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAABpKKT02N+E+QJKBPa8wfL4Xq6A9kp3XvAAAAAAAAAAAjbyjPa69ibp6GRU1x/84MD1NSbjaZmy0AACAPwAAgD8z4AG99uhcuqaI1TZeOTwxOJ5su2P9/LUAAIA/AACAP02F0T3nYWw+HpUKvtsXnr7ue628Kh6evQAAAAAAAAAALSM9voM5CD+JiRU+h+CivuVba70ptB09AAAAAAAAAABmLLC8sU9wPjJ/37y2ume+jQ63PCdSAjsAAAAAAAAAAAB4R7s6gmA+ure5vZHqi77o0Be9JuIDvQAAAAAAAAAATY+dvcMNCro2MTY71YyRNfXmKLtl91e6AAAAAAAAgD+TDi4+ADOZP0gvFT6rOLC+AvRTPrq/8bwAAAAAAAAAAABsxz2PtnS6sDBgui7h9bjuKcy5EsyJOQAAAAAAAIA/ACaSvOH0s7pBRcGz7XO3rwSPLTktob4zAACAPwAAgD/Nutu8NuYwPXorkjsRGUi+vFJcPIxJJD0AAAAAAAAAAAB2XLwUFI26pXxLuWkGP7RxFaO6mFVsOAAAgD8AAIA/OpaePoZ0jD8JA5A837ayvrcT0T5ex1++AAAAAAAAAABmPRM92ppoP6ZNyzt1esO+OLQxPedSgLsAAAAAAAAAANqlkb1Ig5S6UopBOT7WUTSW4s86+6xfuAAAAAAAAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVchAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIhuXPt8WpckCUhpRSlIwBbJRNbwKMAXSUR0CT75D6WPcSdX2UKGgGaAloD0MIeSKI8/Dzb0CUhpRSlGgVTSUBaBZHQJQDoaLn9vV1fZQoaAZoCWgPQwiqY5XS8+lyQJSGlFKUaBVNfAFoFkdAlAQKIWP91nV9lChoBmgJaA9DCBe7fVZZJXBAlIaUUpRoFU3NAWgWR0CUBrhTfixWdX2UKGgGaAloD0MIDDz3Hm71cUCUhpRSlGgVTUMBaBZHQJQG60mdAgR1fZQoaAZoCWgPQwjwMVhxaoJxQJSGlFKUaBVNFAFoFkdAlAeAZ0jkdXV9lChoBmgJaA9DCAa4IFuWfW9AlIaUUpRoFU0oAWgWR0CUB5bTc6/7dX2UKGgGaAloD0MI5ZfBGFG8ckCUhpRSlGgVTUUBaBZHQJQHunyd4FB1fZQoaAZoCWgPQwgVkWEV70hvQJSGlFKUaBVNFQFoFkdAlAh1Pi1iOXV9lChoBmgJaA9DCKcGms953HJAlIaUUpRoFU01AWgWR0CUCUE1EVnFdX2UKGgGaAloD0MITtNnB5wNcUCUhpRSlGgVTUIBaBZHQJQJSy/sVtZ1fZQoaAZoCWgPQwhR9wFI7cVuQJSGlFKUaBVNbQFoFkdAlAwKqXF98nV9lChoBmgJaA9DCIi5pGo7qnBAlIaUUpRoFU0ZAWgWR0CUDBR6F/QTdX2UKGgGaAloD0MIMA3DR8R8cECUhpRSlGgVTUYBaBZHQJQMuP+4smR1fZQoaAZoCWgPQwj+Ddqrz59wQJSGlFKUaBVNlwFoFkdAlA2fGZNO/XV9lChoBmgJaA9DCJZCIJe4A29AlIaUUpRoFU0sAWgWR0CUDk4keIVNdX2UKGgGaAloD0MIW88QjllwVUCUhpRSlGgVS6xoFkdAlA8J2ECeVnV9lChoBmgJaA9DCAADQYAMDSXAlIaUUpRoFUvvaBZHQJQPs4KhL5B1fZQoaAZoCWgPQwjzrQ/rDfZtQJSGlFKUaBVNGQFoFkdAlBEUWVNYbXV9lChoBmgJaA9DCIId/wUCAG5AlIaUUpRoFU2QAWgWR0CUEXo1DSgHdX2UKGgGaAloD0MItMcL6TCscUCUhpRSlGgVTUkBaBZHQJQSNR4yGi51fZQoaAZoCWgPQwjYLJeNTtxyQJSGlFKUaBVNHQFoFkdAlBJQYxcmjXV9lChoBmgJaA9DCE2G4/kMHm9AlIaUUpRoFU1mAWgWR0CUEv3mFJxvdX2UKGgGaAloD0MIOiF00CUScUCUhpRSlGgVTSwBaBZHQJQTpK5Cngp1fZQoaAZoCWgPQwjXhR+cT1VCQJSGlFKUaBVL6GgWR0CUFLpUgjhUdX2UKGgGaAloD0MIL1IoC18pb0CUhpRSlGgVTR0BaBZHQJQV4msvIwN1fZQoaAZoCWgPQwjFVtC0RO1xQJSGlFKUaBVNRAFoFkdAlBdh0yP+43V9lChoBmgJaA9DCBNkBFR4AnBAlIaUUpRoFU3VA2gWR0CUF7gRK6FudX2UKGgGaAloD0MIgzC3e7mrcECUhpRSlGgVTVcBaBZHQJQZzjGT9sJ1fZQoaAZoCWgPQwhP54pSgtdwQJSGlFKUaBVNQgFoFkdAlBt5aV2RrHV9lChoBmgJaA9DCKpHGtxWRXJAlIaUUpRoFU1aAWgWR0CUG8ALy+YddX2UKGgGaAloD0MIa5p3nKKScECUhpRSlGgVTYoBaBZHQJQc03DNyHV1fZQoaAZoCWgPQwgYBcHjm0ZxQJSGlFKUaBVNQAFoFkdAlBz10T101nV9lChoBmgJaA9DCPTAx2BFKG5AlIaUUpRoFU02AWgWR0CUHP0TlDF7dX2UKGgGaAloD0MIKqxUUFG7b0CUhpRSlGgVTWECaBZHQJQdKo99tuV1fZQoaAZoCWgPQwhxy0dS0s9uQJSGlFKUaBVNGwFoFkdAlB4n1anrIHV9lChoBmgJaA9DCPHZOjjYpVNAlIaUUpRoFU0MAWgWR0CUHtzDGcWkdX2UKGgGaAloD0MIPneC/Vd4ckCUhpRSlGgVTWcBaBZHQJQfV2A5Jbt1fZQoaAZoCWgPQwiQTl35rLdvQJSGlFKUaBVNcAFoFkdAlB+HPZ7HAHV9lChoBmgJaA9DCGAi3jq/h3BAlIaUUpRoFU1+A2gWR0CUH+56t1ZDdX2UKGgGaAloD0MIG/FkNzNJbECUhpRSlGgVTREBaBZHQJQgEJv5xip1fZQoaAZoCWgPQwieCyO96O5yQJSGlFKUaBVNLQFoFkdAlCICS3b213V9lChoBmgJaA9DCN/foL36JW9AlIaUUpRoFU0/AWgWR0CUIvwC8vmHdX2UKGgGaAloD0MISnzuBHtKbkCUhpRSlGgVTR8BaBZHQJQjyBMBZIR1fZQoaAZoCWgPQwhW8rG7wKJwQJSGlFKUaBVN4AFoFkdAlCPTin5zo3V9lChoBmgJaA9DCB06Pe/GtVJAlIaUUpRoFUvcaBZHQJQj6Wom5Ud1fZQoaAZoCWgPQwjWjXdHht1xQJSGlFKUaBVNFwFoFkdAlCSwntv4unV9lChoBmgJaA9DCNO84xQddTpAlIaUUpRoFUvvaBZHQJQkusmv4dp1fZQoaAZoCWgPQwhwsg3cgU5AQJSGlFKUaBVL5mgWR0CUJXbIcR16dX2UKGgGaAloD0MIVijS/ZwsTECUhpRSlGgVS7doFkdAlCW+JpFkQXV9lChoBmgJaA9DCEPJ5NSOU3FAlIaUUpRoFU0iAWgWR0CUJjBNVR1pdX2UKGgGaAloD0MIUaOQZJZgcUCUhpRSlGgVTS8BaBZHQJQ5hqCYkVx1fZQoaAZoCWgPQwgCKhxBKhxvQJSGlFKUaBVNMQFoFkdAlDuywSrYG3V9lChoBmgJaA9DCAjjp3Fv9m1AlIaUUpRoFU1WAWgWR0CUPHByS3b3dX2UKGgGaAloD0MITmA6rdvkcECUhpRSlGgVTTQBaBZHQJQ8mDOC5Et1fZQoaAZoCWgPQwhJS+XtCGs1QJSGlFKUaBVL8WgWR0CUPWzXSSeRdX2UKGgGaAloD0MIRtCYSdShTECUhpRSlGgVS+ZoFkdAlD76NQ0oB3V9lChoBmgJaA9DCMy3Pqx3m3BAlIaUUpRoFU0HAWgWR0CUPw/gBLf2dX2UKGgGaAloD0MIrFPle0axcECUhpRSlGgVTT8BaBZHQJQ/O0KJEYx1fZQoaAZoCWgPQwh24Qfn0+dtQJSGlFKUaBVNGgFoFkdAlD/PkWAPNHV9lChoBmgJaA9DCFbUYBpGN3FAlIaUUpRoFU2xAWgWR0CUQDAOavzOdX2UKGgGaAloD0MI6C6JsyIgcUCUhpRSlGgVTS8BaBZHQJRAWtYB/7V1fZQoaAZoCWgPQwhPHhZqjcNxQJSGlFKUaBVNNgFoFkdAlEF5m/WUbHV9lChoBmgJaA9DCNcUyOxsbHFAlIaUUpRoFU0CAWgWR0CUQbWKMvRJdX2UKGgGaAloD0MIqRJlb2l4cUCUhpRSlGgVTS8BaBZHQJRB8/fO2Rd1fZQoaAZoCWgPQwiHxahr7cJtQJSGlFKUaBVNKQFoFkdAlEIDqW1MNHV9lChoBmgJaA9DCDQsRl3rxm9AlIaUUpRoFU0+AWgWR0CUQvkcCHRDdX2UKGgGaAloD0MIKbFreztTbUCUhpRSlGgVTSIBaBZHQJREuKekHlh1fZQoaAZoCWgPQwiWtOIbCm1QQJSGlFKUaBVLy2gWR0CURRUVzp5edX2UKGgGaAloD0MIW+uLhDYLb0CUhpRSlGgVS/9oFkdAlEVaRp1zQ3V9lChoBmgJaA9DCGLaN/fXjXFAlIaUUpRoFU0jAWgWR0CURYIeHSF5dX2UKGgGaAloD0MIjZYDPdQSbkCUhpRSlGgVTTcBaBZHQJRGOdXko4N1fZQoaAZoCWgPQwh40VeQpiRyQJSGlFKUaBVNBgFoFkdAlEgGgBcRlHV9lChoBmgJaA9DCIdu9gdKJXJAlIaUUpRoFU0rAWgWR0CUSE2lEZzgdX2UKGgGaAloD0MIdLM/UO4JckCUhpRSlGgVTS4BaBZHQJRJBLTQVsV1fZQoaAZoCWgPQwhPXfksj2dxQJSGlFKUaBVNSgNoFkdAlElsr/bTMXV9lChoBmgJaA9DCFwgQfEjLXFAlIaUUpRoFU0HAWgWR0CUSi7ZnL7odX2UKGgGaAloD0MIaverAF+0ckCUhpRSlGgVTUoBaBZHQJRKjwqiGnJ1fZQoaAZoCWgPQwjp0r8kFaJwQJSGlFKUaBVNQgFoFkdAlEvrlq8DjnV9lChoBmgJaA9DCEDAWrXrcHBAlIaUUpRoFU1KAWgWR0CUS/Gj9GZvdX2UKGgGaAloD0MItDo5QzHIcECUhpRSlGgVTVMBaBZHQJRMxvtMPBl1fZQoaAZoCWgPQwh1eAjjp5JtQJSGlFKUaBVNMwFoFkdAlE0Da9K28nV9lChoBmgJaA9DCLZq14S0ZXBAlIaUUpRoFU27AWgWR0CUTSeEqUeNdX2UKGgGaAloD0MIRbsKKT8PT0CUhpRSlGgVS79oFkdAlE65GBnSOXV9lChoBmgJaA9DCHUiwVSzW25AlIaUUpRoFU01AWgWR0CUT0Sh8IAwdX2UKGgGaAloD0MIyeU/pF8QcUCUhpRSlGgVTTIBaBZHQJRPmPgeii91fZQoaAZoCWgPQwjkDwaeO2pyQJSGlFKUaBVNOQFoFkdAlE+s0P6KtXV9lChoBmgJaA9DCPmE7LwNNG1AlIaUUpRoFU0qAWgWR0CUUCSVnmJWdX2UKGgGaAloD0MIqz3shcJ7cUCUhpRSlGgVTW4BaBZHQJRQqu3c5811fZQoaAZoCWgPQwivRKD6B2lDQJSGlFKUaBVL52gWR0CUUPgntv4udX2UKGgGaAloD0MIjnQGRh5jckCUhpRSlGgVS/poFkdAlFIiCBf8dnV9lChoBmgJaA9DCGDHf4EgIm9AlIaUUpRoFU0RAWgWR0CUUy2ycCo1dX2UKGgGaAloD0MIbamDvB6ebUCUhpRSlGgVTW0BaBZHQJRT4qx1PnB1fZQoaAZoCWgPQwj2twTgH/luQJSGlFKUaBVNUgFoFkdAlFPstPHktHV9lChoBmgJaA9DCLHCLR9J6lNAlIaUUpRoFUveaBZHQJRUBGd7OVx1fZQoaAZoCWgPQwgLYwtBTjpyQJSGlFKUaBVNLQFoFkdAlFVNDQZ4wHV9lChoBmgJaA9DCOOKi6MyS3BAlIaUUpRoFU0eAWgWR0CUVZ7j1f3OdX2UKGgGaAloD0MI5xw8E1qGcUCUhpRSlGgVTRcBaBZHQJRXbPkaMrF1fZQoaAZoCWgPQwj4b16c+MJxQJSGlFKUaBVNWgFoFkdAlFfPVqesgnV9lChoBmgJaA9DCNsxdVe2mXFAlIaUUpRoFU0RAWgWR0CUWA49X9zfdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:669d3b4524307d4651cb53718aa94fafc62e32413812ba71e4347e7a697ff194
3
+ size 147404
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,95 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f5156f5a820>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f5156f5a8b0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f5156f5a940>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f5156f5a9d0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f5156f5aa60>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f5156f5aaf0>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f5156f5ab80>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f5156f5ac10>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f5156f5aca0>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f5156f5ad30>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f5156f5adc0>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f5156f5ae50>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc_data object at 0x7f5156f55900>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "observation_space": {
25
+ ":type:": "<class 'gym.spaces.box.Box'>",
26
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
27
+ "dtype": "float32",
28
+ "_shape": [
29
+ 8
30
+ ],
31
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
32
+ "high": "[inf inf inf inf inf inf inf inf]",
33
+ "bounded_below": "[False False False False False False False False]",
34
+ "bounded_above": "[False False False False False False False False]",
35
+ "_np_random": null
36
+ },
37
+ "action_space": {
38
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
39
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
40
+ "n": 4,
41
+ "_shape": [],
42
+ "dtype": "int64",
43
+ "_np_random": null
44
+ },
45
+ "n_envs": 16,
46
+ "num_timesteps": 1015808,
47
+ "_total_timesteps": 1000000,
48
+ "_num_timesteps_at_start": 0,
49
+ "seed": null,
50
+ "action_noise": null,
51
+ "start_time": 1674116697140013271,
52
+ "learning_rate": 0.0003,
53
+ "tensorboard_log": null,
54
+ "lr_schedule": {
55
+ ":type:": "<class 'function'>",
56
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
57
+ },
58
+ "_last_obs": {
59
+ ":type:": "<class 'numpy.ndarray'>",
60
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAABpKKT02N+E+QJKBPa8wfL4Xq6A9kp3XvAAAAAAAAAAAjbyjPa69ibp6GRU1x/84MD1NSbjaZmy0AACAPwAAgD8z4AG99uhcuqaI1TZeOTwxOJ5su2P9/LUAAIA/AACAP02F0T3nYWw+HpUKvtsXnr7ue628Kh6evQAAAAAAAAAALSM9voM5CD+JiRU+h+CivuVba70ptB09AAAAAAAAAABmLLC8sU9wPjJ/37y2ume+jQ63PCdSAjsAAAAAAAAAAAB4R7s6gmA+ure5vZHqi77o0Be9JuIDvQAAAAAAAAAATY+dvcMNCro2MTY71YyRNfXmKLtl91e6AAAAAAAAgD+TDi4+ADOZP0gvFT6rOLC+AvRTPrq/8bwAAAAAAAAAAABsxz2PtnS6sDBgui7h9bjuKcy5EsyJOQAAAAAAAIA/ACaSvOH0s7pBRcGz7XO3rwSPLTktob4zAACAPwAAgD/Nutu8NuYwPXorkjsRGUi+vFJcPIxJJD0AAAAAAAAAAAB2XLwUFI26pXxLuWkGP7RxFaO6mFVsOAAAgD8AAIA/OpaePoZ0jD8JA5A837ayvrcT0T5ex1++AAAAAAAAAABmPRM92ppoP6ZNyzt1esO+OLQxPedSgLsAAAAAAAAAANqlkb1Ig5S6UopBOT7WUTSW4s86+6xfuAAAAAAAAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
61
+ },
62
+ "_last_episode_starts": {
63
+ ":type:": "<class 'numpy.ndarray'>",
64
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
65
+ },
66
+ "_last_original_obs": null,
67
+ "_episode_num": 0,
68
+ "use_sde": false,
69
+ "sde_sample_freq": -1,
70
+ "_current_progress_remaining": -0.015808000000000044,
71
+ "ep_info_buffer": {
72
+ ":type:": "<class 'collections.deque'>",
73
+ ":serialized:": "gAWVchAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIhuXPt8WpckCUhpRSlIwBbJRNbwKMAXSUR0CT75D6WPcSdX2UKGgGaAloD0MIeSKI8/Dzb0CUhpRSlGgVTSUBaBZHQJQDoaLn9vV1fZQoaAZoCWgPQwiqY5XS8+lyQJSGlFKUaBVNfAFoFkdAlAQKIWP91nV9lChoBmgJaA9DCBe7fVZZJXBAlIaUUpRoFU3NAWgWR0CUBrhTfixWdX2UKGgGaAloD0MIDDz3Hm71cUCUhpRSlGgVTUMBaBZHQJQG60mdAgR1fZQoaAZoCWgPQwjwMVhxaoJxQJSGlFKUaBVNFAFoFkdAlAeAZ0jkdXV9lChoBmgJaA9DCAa4IFuWfW9AlIaUUpRoFU0oAWgWR0CUB5bTc6/7dX2UKGgGaAloD0MI5ZfBGFG8ckCUhpRSlGgVTUUBaBZHQJQHunyd4FB1fZQoaAZoCWgPQwgVkWEV70hvQJSGlFKUaBVNFQFoFkdAlAh1Pi1iOXV9lChoBmgJaA9DCKcGms953HJAlIaUUpRoFU01AWgWR0CUCUE1EVnFdX2UKGgGaAloD0MITtNnB5wNcUCUhpRSlGgVTUIBaBZHQJQJSy/sVtZ1fZQoaAZoCWgPQwhR9wFI7cVuQJSGlFKUaBVNbQFoFkdAlAwKqXF98nV9lChoBmgJaA9DCIi5pGo7qnBAlIaUUpRoFU0ZAWgWR0CUDBR6F/QTdX2UKGgGaAloD0MIMA3DR8R8cECUhpRSlGgVTUYBaBZHQJQMuP+4smR1fZQoaAZoCWgPQwj+Ddqrz59wQJSGlFKUaBVNlwFoFkdAlA2fGZNO/XV9lChoBmgJaA9DCJZCIJe4A29AlIaUUpRoFU0sAWgWR0CUDk4keIVNdX2UKGgGaAloD0MIW88QjllwVUCUhpRSlGgVS6xoFkdAlA8J2ECeVnV9lChoBmgJaA9DCAADQYAMDSXAlIaUUpRoFUvvaBZHQJQPs4KhL5B1fZQoaAZoCWgPQwjzrQ/rDfZtQJSGlFKUaBVNGQFoFkdAlBEUWVNYbXV9lChoBmgJaA9DCIId/wUCAG5AlIaUUpRoFU2QAWgWR0CUEXo1DSgHdX2UKGgGaAloD0MItMcL6TCscUCUhpRSlGgVTUkBaBZHQJQSNR4yGi51fZQoaAZoCWgPQwjYLJeNTtxyQJSGlFKUaBVNHQFoFkdAlBJQYxcmjXV9lChoBmgJaA9DCE2G4/kMHm9AlIaUUpRoFU1mAWgWR0CUEv3mFJxvdX2UKGgGaAloD0MIOiF00CUScUCUhpRSlGgVTSwBaBZHQJQTpK5Cngp1fZQoaAZoCWgPQwjXhR+cT1VCQJSGlFKUaBVL6GgWR0CUFLpUgjhUdX2UKGgGaAloD0MIL1IoC18pb0CUhpRSlGgVTR0BaBZHQJQV4msvIwN1fZQoaAZoCWgPQwjFVtC0RO1xQJSGlFKUaBVNRAFoFkdAlBdh0yP+43V9lChoBmgJaA9DCBNkBFR4AnBAlIaUUpRoFU3VA2gWR0CUF7gRK6FudX2UKGgGaAloD0MIgzC3e7mrcECUhpRSlGgVTVcBaBZHQJQZzjGT9sJ1fZQoaAZoCWgPQwhP54pSgtdwQJSGlFKUaBVNQgFoFkdAlBt5aV2RrHV9lChoBmgJaA9DCKpHGtxWRXJAlIaUUpRoFU1aAWgWR0CUG8ALy+YddX2UKGgGaAloD0MIa5p3nKKScECUhpRSlGgVTYoBaBZHQJQc03DNyHV1fZQoaAZoCWgPQwgYBcHjm0ZxQJSGlFKUaBVNQAFoFkdAlBz10T101nV9lChoBmgJaA9DCPTAx2BFKG5AlIaUUpRoFU02AWgWR0CUHP0TlDF7dX2UKGgGaAloD0MIKqxUUFG7b0CUhpRSlGgVTWECaBZHQJQdKo99tuV1fZQoaAZoCWgPQwhxy0dS0s9uQJSGlFKUaBVNGwFoFkdAlB4n1anrIHV9lChoBmgJaA9DCPHZOjjYpVNAlIaUUpRoFU0MAWgWR0CUHtzDGcWkdX2UKGgGaAloD0MIPneC/Vd4ckCUhpRSlGgVTWcBaBZHQJQfV2A5Jbt1fZQoaAZoCWgPQwiQTl35rLdvQJSGlFKUaBVNcAFoFkdAlB+HPZ7HAHV9lChoBmgJaA9DCGAi3jq/h3BAlIaUUpRoFU1+A2gWR0CUH+56t1ZDdX2UKGgGaAloD0MIG/FkNzNJbECUhpRSlGgVTREBaBZHQJQgEJv5xip1fZQoaAZoCWgPQwieCyO96O5yQJSGlFKUaBVNLQFoFkdAlCICS3b213V9lChoBmgJaA9DCN/foL36JW9AlIaUUpRoFU0/AWgWR0CUIvwC8vmHdX2UKGgGaAloD0MISnzuBHtKbkCUhpRSlGgVTR8BaBZHQJQjyBMBZIR1fZQoaAZoCWgPQwhW8rG7wKJwQJSGlFKUaBVN4AFoFkdAlCPTin5zo3V9lChoBmgJaA9DCB06Pe/GtVJAlIaUUpRoFUvcaBZHQJQj6Wom5Ud1fZQoaAZoCWgPQwjWjXdHht1xQJSGlFKUaBVNFwFoFkdAlCSwntv4unV9lChoBmgJaA9DCNO84xQddTpAlIaUUpRoFUvvaBZHQJQkusmv4dp1fZQoaAZoCWgPQwhwsg3cgU5AQJSGlFKUaBVL5mgWR0CUJXbIcR16dX2UKGgGaAloD0MIVijS/ZwsTECUhpRSlGgVS7doFkdAlCW+JpFkQXV9lChoBmgJaA9DCEPJ5NSOU3FAlIaUUpRoFU0iAWgWR0CUJjBNVR1pdX2UKGgGaAloD0MIUaOQZJZgcUCUhpRSlGgVTS8BaBZHQJQ5hqCYkVx1fZQoaAZoCWgPQwgCKhxBKhxvQJSGlFKUaBVNMQFoFkdAlDuywSrYG3V9lChoBmgJaA9DCAjjp3Fv9m1AlIaUUpRoFU1WAWgWR0CUPHByS3b3dX2UKGgGaAloD0MITmA6rdvkcECUhpRSlGgVTTQBaBZHQJQ8mDOC5Et1fZQoaAZoCWgPQwhJS+XtCGs1QJSGlFKUaBVL8WgWR0CUPWzXSSeRdX2UKGgGaAloD0MIRtCYSdShTECUhpRSlGgVS+ZoFkdAlD76NQ0oB3V9lChoBmgJaA9DCMy3Pqx3m3BAlIaUUpRoFU0HAWgWR0CUPw/gBLf2dX2UKGgGaAloD0MIrFPle0axcECUhpRSlGgVTT8BaBZHQJQ/O0KJEYx1fZQoaAZoCWgPQwh24Qfn0+dtQJSGlFKUaBVNGgFoFkdAlD/PkWAPNHV9lChoBmgJaA9DCFbUYBpGN3FAlIaUUpRoFU2xAWgWR0CUQDAOavzOdX2UKGgGaAloD0MI6C6JsyIgcUCUhpRSlGgVTS8BaBZHQJRAWtYB/7V1fZQoaAZoCWgPQwhPHhZqjcNxQJSGlFKUaBVNNgFoFkdAlEF5m/WUbHV9lChoBmgJaA9DCNcUyOxsbHFAlIaUUpRoFU0CAWgWR0CUQbWKMvRJdX2UKGgGaAloD0MIqRJlb2l4cUCUhpRSlGgVTS8BaBZHQJRB8/fO2Rd1fZQoaAZoCWgPQwiHxahr7cJtQJSGlFKUaBVNKQFoFkdAlEIDqW1MNHV9lChoBmgJaA9DCDQsRl3rxm9AlIaUUpRoFU0+AWgWR0CUQvkcCHRDdX2UKGgGaAloD0MIKbFreztTbUCUhpRSlGgVTSIBaBZHQJREuKekHlh1fZQoaAZoCWgPQwiWtOIbCm1QQJSGlFKUaBVLy2gWR0CURRUVzp5edX2UKGgGaAloD0MIW+uLhDYLb0CUhpRSlGgVS/9oFkdAlEVaRp1zQ3V9lChoBmgJaA9DCGLaN/fXjXFAlIaUUpRoFU0jAWgWR0CURYIeHSF5dX2UKGgGaAloD0MIjZYDPdQSbkCUhpRSlGgVTTcBaBZHQJRGOdXko4N1fZQoaAZoCWgPQwh40VeQpiRyQJSGlFKUaBVNBgFoFkdAlEgGgBcRlHV9lChoBmgJaA9DCIdu9gdKJXJAlIaUUpRoFU0rAWgWR0CUSE2lEZzgdX2UKGgGaAloD0MIdLM/UO4JckCUhpRSlGgVTS4BaBZHQJRJBLTQVsV1fZQoaAZoCWgPQwhPXfksj2dxQJSGlFKUaBVNSgNoFkdAlElsr/bTMXV9lChoBmgJaA9DCFwgQfEjLXFAlIaUUpRoFU0HAWgWR0CUSi7ZnL7odX2UKGgGaAloD0MIaverAF+0ckCUhpRSlGgVTUoBaBZHQJRKjwqiGnJ1fZQoaAZoCWgPQwjp0r8kFaJwQJSGlFKUaBVNQgFoFkdAlEvrlq8DjnV9lChoBmgJaA9DCEDAWrXrcHBAlIaUUpRoFU1KAWgWR0CUS/Gj9GZvdX2UKGgGaAloD0MItDo5QzHIcECUhpRSlGgVTVMBaBZHQJRMxvtMPBl1fZQoaAZoCWgPQwh1eAjjp5JtQJSGlFKUaBVNMwFoFkdAlE0Da9K28nV9lChoBmgJaA9DCLZq14S0ZXBAlIaUUpRoFU27AWgWR0CUTSeEqUeNdX2UKGgGaAloD0MIRbsKKT8PT0CUhpRSlGgVS79oFkdAlE65GBnSOXV9lChoBmgJaA9DCHUiwVSzW25AlIaUUpRoFU01AWgWR0CUT0Sh8IAwdX2UKGgGaAloD0MIyeU/pF8QcUCUhpRSlGgVTTIBaBZHQJRPmPgeii91fZQoaAZoCWgPQwjkDwaeO2pyQJSGlFKUaBVNOQFoFkdAlE+s0P6KtXV9lChoBmgJaA9DCPmE7LwNNG1AlIaUUpRoFU0qAWgWR0CUUCSVnmJWdX2UKGgGaAloD0MIqz3shcJ7cUCUhpRSlGgVTW4BaBZHQJRQqu3c5811fZQoaAZoCWgPQwivRKD6B2lDQJSGlFKUaBVL52gWR0CUUPgntv4udX2UKGgGaAloD0MIjnQGRh5jckCUhpRSlGgVS/poFkdAlFIiCBf8dnV9lChoBmgJaA9DCGDHf4EgIm9AlIaUUpRoFU0RAWgWR0CUUy2ycCo1dX2UKGgGaAloD0MIbamDvB6ebUCUhpRSlGgVTW0BaBZHQJRT4qx1PnB1fZQoaAZoCWgPQwj2twTgH/luQJSGlFKUaBVNUgFoFkdAlFPstPHktHV9lChoBmgJaA9DCLHCLR9J6lNAlIaUUpRoFUveaBZHQJRUBGd7OVx1fZQoaAZoCWgPQwgLYwtBTjpyQJSGlFKUaBVNLQFoFkdAlFVNDQZ4wHV9lChoBmgJaA9DCOOKi6MyS3BAlIaUUpRoFU0eAWgWR0CUVZ7j1f3OdX2UKGgGaAloD0MI5xw8E1qGcUCUhpRSlGgVTRcBaBZHQJRXbPkaMrF1fZQoaAZoCWgPQwj4b16c+MJxQJSGlFKUaBVNWgFoFkdAlFfPVqesgnV9lChoBmgJaA9DCNsxdVe2mXFAlIaUUpRoFU0RAWgWR0CUWA49X9zfdWUu"
74
+ },
75
+ "ep_success_buffer": {
76
+ ":type:": "<class 'collections.deque'>",
77
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
78
+ },
79
+ "_n_updates": 248,
80
+ "n_steps": 1024,
81
+ "gamma": 0.999,
82
+ "gae_lambda": 0.98,
83
+ "ent_coef": 0.01,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 4,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null
95
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e18687641772d114b229c6a6ffd57dfa85cc4fdf21c2a61652b40f6884587b91
3
+ size 87929
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:17ec9b3afd619de7899faea1e3a9bf464dcae5e6fae80e72620e10fafd23f005
3
+ size 43393
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.8.10
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.21.6
7
+ - Gym: 0.21.0
replay.mp4 ADDED
Binary file (209 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 260.8300788814014, "std_reward": 23.94603966387496, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-19T08:50:54.633333"}