This model used hfl/chinese-roberta-wwm-ext-large backbone and was trained on SNLI, MNLI, DNLI, KvPI data in Chinese version. Model structures are as follows: `class RobertaForSequenceClassification(nn.Module): def __init__(self, tagset_size): super(RobertaForSequenceClassification, self).__init__() self.tagset_size = tagset_size self.roberta_single= AutoModel.from_pretrained(pretrain_model_dir) self.single_hidden2tag = RobertaClassificationHead(bert_hidden_dim, tagset_size) def forward(self, input_ids, input_mask): outputs_single = self.roberta_single(input_ids, input_mask, None) hidden_states_single = outputs_single[1]#torch.tanh(self.hidden_layer_2(torch.tanh(self.hidden_layer_1(outputs_single[1])))) #(batch, hidden) score_single = self.single_hidden2tag(hidden_states_single) #(batch, tag_set) return score_single class RobertaClassificationHead(nn.Module): def __init__(self, bert_hidden_dim, num_labels): super(RobertaClassificationHead, self).__init__() self.dense = nn.Linear(bert_hidden_dim, bert_hidden_dim) self.dropout = nn.Dropout(0.1) self.out_proj = nn.Linear(bert_hidden_dim, num_labels) def forward(self, features): x = features#[:, 0, :] # take token (equiv. to [CLS]) x = self.dropout(x) x = self.dense(x) x = torch.tanh(x) x = self.dropout(x) x = self.out_proj(x) return x model = RobertaForSequenceClassification(num_labels) model.load_state_dict(torch.load(args.model_save_path+'Roberta_large_model.pt', map_location=device))`