JariYP's picture
Upload 2 files
f6670ff
raw
history blame
1.16 kB
import streamlit as st
from transformers import pipeline, AutoModel, AutoTokenizer
# Load the model and tokenizer
model_name = "sentence-transformers/all-MiniLM-L6-v2"
model = AutoModel.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name)
# Create a Streamlit app
st.title("Sentence Similarity App")
# Ask the user for input
user_input = st.text_area("Enter a sentence:")
# Define a function to calculate sentence similarity
def calculate_similarity(input_text):
similarity_pipeline = pipeline("feature-extraction", model=model, tokenizer=tokenizer)
user_embedding = similarity_pipeline(input_text)[0]
return user_embedding
if user_input:
# Calculate similarity with a reference sentence
reference_sentence = "Hugging Face is an AI research organization."
user_embedding = calculate_similarity(user_input)
reference_embedding = calculate_similarity(reference_sentence)
# Calculate cosine similarity
similarity_score = round(float(user_embedding.dot(reference_embedding.T)), 4)
# Display the similarity score
st.write(f"Similarity Score with Reference Sentence: {similarity_score}")