{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x79654eb65240>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x79654eb652d0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x79654eb65360>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x79654eb653f0>", "_build": "<function ActorCriticPolicy._build at 0x79654eb65480>", "forward": "<function ActorCriticPolicy.forward at 0x79654eb65510>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x79654eb655a0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x79654eb65630>", "_predict": "<function ActorCriticPolicy._predict at 0x79654eb656c0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x79654eb65750>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x79654eb657e0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x79654eb65870>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x79654eb07a00>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 2031616, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1696279188286764464, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAANr0YT5UHkk/AskHvDxOB7/65sI+3kPzvQAAAAAAAAAAZpQWvOEQmLpv2oGygx/kMJHkcDoAfOsyAACAPwAAgD+akxe9SBuQupZUnD0pCT61tpBLu83MQbQAAIA/AACAP8AVlj7uUQM/T3zFvoRjF783JDU+LW/NvgAAAAAAAAAAANCIOtD5tD9VfNg9nGsGPiOjnboaJsS8AAAAAAAAAABNQrS9tDxzP8K+kr0z5Vq/UrsTvikNxTkAAAAAAAAAAEaSgz6vZVg/ncjzPS76F790lNQ+mcegvQAAAAAAAAAApr1hPgIHsj42T4C+5frsvoW2bT7Yj62+AAAAAAAAAACNAqU9XCsUuoWyob11FiuzOYc7u3htTTMAAIA/AACAP7OJRj6f1m8+mv3GvrILLr9vewm9F1mdvgAAAAAAAAAAmu8aPFL+xrviRDo8hCJDPcQoBr33bSM9AACAPwAAgD8aLjo9KRYBvOHglbvBL5Y8fRtYPRXxer0AAIA/AACAP5oNHrxSoKC5NkO2OgR8WDIDwPM52g5FswAAgD8AAIA/syJtPaRwaT5j0ns6wE39vsJ/4DyAEZo8AAAAAAAAAACaHeK89qQoupw6gTmtT/I0xJLQO8qFl7gAAIA/AACAP5odhb0O2ps/aZ+uvtl0Jr8UZ9e9Mp2PvgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAABAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHHVylFc6eaMAWyUS7aMAXSUR0DFQjCn752ydX2UKGgGR0BxWYsUZeiSaAdLsWgIR0DFQldUyYXwdX2UKGgGR0ByTqEmICU5aAdLl2gIR0DFQlkzXSSedX2UKGgGR0Bx9WDGtITXaAdLpGgIR0DFQl0Ne+mFdX2UKGgGR0BzHiVRk3CLaAdL1mgIR0DFQnaQmu1XdX2UKGgGR0BwlgNDtw71aAdLomgIR0DFQnm+TNdJdX2UKGgGR0ByfGbpeNT+aAdLl2gIR0DFQnwzrNW3dX2UKGgGR0ByFHLOiWVvaAdLuWgIR0DFQoFBlcyFdX2UKGgGR0Bzot+WnjyXaAdLvWgIR0DFQoNR1oxpdX2UKGgGR0BzBxECvHLiaAdLkGgIR0DFQo8vPC2udX2UKGgGR0BwyFRdhRZVaAdLnGgIR0DFQpW/N7jUdX2UKGgGR0BxxVkUbkwOaAdLlWgIR0DFQpziyY5UdX2UKGgGR0ByEDEzfrKOaAdLwWgIR0DFQrZi1AqvdX2UKGgGR0BwyTNY8uBdaAdLnGgIR0DFQrWSOinHdX2UKGgGR0Bz448+zMRpaAdLmGgIR0DFQsET101ZdX2UKGgGR0ByW8sPJ7swaAdL42gIR0DFQsWbNKRMdX2UKGgGR0Bw4EJjUd7waAdLk2gIR0DFQsgWpIczdX2UKGgGR0Bx7O6pYLb6aAdLi2gIR0DFQuz1/Ue/dX2UKGgGR0BzmFA3T/hmaAdLt2gIR0DFQvri++M7dX2UKGgGR0BuouLgn+hoaAdLoWgIR0DFQv6wfQrudX2UKGgGR0BxXIrpaA4GaAdLpWgIR0DFQwVnM+vAdX2UKGgGR0ByX+TY/Vy4aAdLs2gIR0DFQxCRQrMDdX2UKGgGR0BxmrDEWIoFaAdLqWgIR0DFQxKzRhMKdX2UKGgGR0BxnlBTn7pFaAdLg2gIR0DFQx3qiXY2dX2UKGgGR0BzN1Up/gBLaAdL8WgIR0DFQx65NGmUdX2UKGgGR0Bx8VZV4oqkaAdLrmgIR0DFQyA46wMZdX2UKGgGR0BvmSR0U47zaAdLlWgIR0DFQx/kxREXdX2UKGgGR0ByLcizLOiWaAdL92gIR0DFQyPpW3jNdX2UKGgGR0B0eI384xUOaAdL6WgIR0DFQy5O8CgcdX2UKGgGR0BwyCD8LrooaAdLoGgIR0DFQy36Eal2dX2UKGgGR0By6LeUILPVaAdL1GgIR0DFQzNCRfWudX2UKGgGR0BwZD90ihWYaAdLpWgIR0DFQzVhd+ocdX2UKGgGR0B0ExPwd8zAaAdLw2gIR0DFQz1efI0ZdX2UKGgGR0BzK/zSThYOaAdLqmgIR0DFQ10yJsO5dX2UKGgGR0BzGk7GNrCWaAdLl2gIR0DFQ2h2ZApsdX2UKGgGR0Bx6ExnFo+OaAdLrWgIR0DFQ22SbH6udX2UKGgGR0B0DD8wYcebaAdLtWgIR0DFQ3aFRHf/dX2UKGgGR0BxD7L6k691aAdLkmgIR0DFQ33/JeVtdX2UKGgGR0BwYoTwlSjyaAdLo2gIR0DFQ4gyTINmdX2UKGgGR0BzrkgA6uGLaAdLuGgIR0DFQ4smrsBydX2UKGgGR0By7HsXzlLfaAdLwGgIR0DFQ46lgtvodX2UKGgGR0BxhukSElE7aAdLr2gIR0DFQ5Jvgm7bdX2UKGgGR0Bw7YoPTXrdaAdLsGgIR0DFQ5KzqrzYdX2UKGgGR0BzOpeAuqWDaAdLmWgIR0DFQ5lSCOFQdX2UKGgGR0BzKnU/fO2RaAdLt2gIR0DFQ5qfHxSYdX2UKGgGR0Bze5u63AmBaAdLrWgIR0DFQ56fra/RdX2UKGgGR0Bw5+muTzNEaAdLs2gIR0DFQ6ZsMy8BdX2UKGgGR0By965nUUfxaAdLvGgIR0DFQ6Z1ie/YdX2UKGgGR0BzRCOfdyksaAdLrWgIR0DFQ6xT0g8sdX2UKGgGR0ByjbdHlOoHaAdLh2gIR0DFQ7H+0gKXdX2UKGgGR0ByVghvBJqZaAdLjGgIR0DFQ8zeQ+2WdX2UKGgGR0BxhawFC9h7aAdLr2gIR0DFQ9b92ovSdX2UKGgGR0Bx1pgw482aaAdLmmgIR0DFQ93cclw+dX2UKGgGR0ByatVKf4ATaAdLumgIR0DFQ+KwUxmDdX2UKGgGR0BxtDDVH4GmaAdLk2gIR0DFQ+6ih37ldX2UKGgGR0BwE2A7PppwaAdLsmgIR0DFQ/hjUd7wdX2UKGgGR0Bv2qCrcTJyaAdLj2gIR0DFRANoFmnPdX2UKGgGR0BwM3J+2E00aAdLqWgIR0DFRAVS88LbdX2UKGgGR0BzEixGDtgKaAdLx2gIR0DFRAn/FR51dX2UKGgGR0BxV4bVBlcyaAdLo2gIR0DFRA/TNMXadX2UKGgGR0BxEJmh/RVqaAdLsmgIR0DFRBBhvze5dX2UKGgGR0ByWmVeKKpDaAdLzmgIR0DFRBE5lvqDdX2UKGgGR0ByKbdxhlUZaAdLymgIR0DFRBJmEoOQdX2UKGgGR0Bzd0SdvsJIaAdLwmgIR0DFRBWdy1eCdX2UKGgGR0Bz+s3qAz55aAdLxGgIR0DFRCkCPp6hdX2UKGgGR0BzYwp+c6NmaAdL2mgIR0DFRD4OhCdCdX2UKGgGR0BzqYOuq3mWaAdLp2gIR0DFREIdMj/udX2UKGgGR0BxTmPdVNpNaAdLmmgIR0DFREWkHlfadX2UKGgGR0Bys19srNGFaAdLv2gIR0DFREpAdGRWdX2UKGgGR0BBn+lj3EhraAdLYGgIR0DFRE2KEWZadX2UKGgGR0BzrMsf7rLRaAdLsWgIR0DFRFFoxpL3dX2UKGgGR0BxclsImgJ1aAdLsGgIR0DFRF86ij+KdX2UKGgGR0Byi0x0uDjBaAdLm2gIR0DFRGUovzvrdX2UKGgGR0Bwr3ustCiRaAdLiWgIR0DFRGbNGEwndX2UKGgGR0ByMUCdSVGDaAdLiWgIR0DFRG0RradudX2UKGgGR0ByQAp9ZzPsaAdLmmgIR0DFRHKV2Rq5dX2UKGgGR0BwzMhkiD/VaAdLp2gIR0DFRHNelbeNdX2UKGgGR0Bx9arwOOKgaAdLuWgIR0DFRHma2F37dX2UKGgGR0BzxYzuWrwOaAdL02gIR0DFRH89U0emdX2UKGgGR0BxINg3Lmp3aAdLvmgIR0DFRIoqgAZLdX2UKGgGR0BwTCv7m+0xaAdLo2gIR0DFRJHaews5dX2UKGgGR0BzewQPI4lyaAdLj2gIR0DFRJ+Gyon8dX2UKGgGR0B0Uv9n9NvgaAdLnGgIR0DFRKT56+nJdX2UKGgGR0BwuGUfPompaAdLrmgIR0DFRKzCLuQZdX2UKGgGR0BGylHz6JqJaAdLgWgIR0DFRK/bblBAdX2UKGgGR0BxgIPMB6rvaAdLsGgIR0DFRMDzundgdX2UKGgGR0ByTRc7hegMaAdLvWgIR0DFRMXYlIEsdX2UKGgGR0ByK8OskpqiaAdLymgIR0DFRM0zdk8SdX2UKGgGR0Bx5kdDIBBBaAdLi2gIR0DFRM7qOcUedX2UKGgGR0BwSDduYQaraAdLo2gIR0DFRNESM98rdX2UKGgGR0BzUgwUQCjlaAdLpGgIR0DFROeDL8rJdX2UKGgGR0Bxr+hJyyUtaAdLwmgIR0DFRO5Y3eendX2UKGgGR0BzHpCngpBpaAdL1GgIR0DFRPQiiZfEdX2UKGgGR0BxbVbVz6rOaAdLs2gIR0DFRPfoC+10dX2UKGgGR0Byui90zTF3aAdLpmgIR0DFRPuFtbcHdX2UKGgGR0Bw4jmuDBdlaAdLpmgIR0DFRQLmjj7zdX2UKGgGR0BzeAuwosqbaAdL3GgIR0DFRQXphWo4dX2UKGgGR0Bwtbjm0VrRaAdLmGgIR0DFRQgy44IbdX2UKGgGR0BwT74REnb7aAdLpGgIR0DFRR6YXwb3dX2UKGgGR0ByrNplBhQWaAdLxmgIR0DFRSm3hGYsdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 992, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 16, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}} |