ppo-LunarLander-v2 / config.json
Jas23's picture
ppo model for lunar_lander_v2 pushed
67f9870
raw
history blame
13.7 kB
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x79204a330940>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x79204a3309d0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x79204a330a60>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x79204a330af0>", "_build": "<function ActorCriticPolicy._build at 0x79204a330b80>", "forward": "<function ActorCriticPolicy.forward at 0x79204a330c10>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x79204a330ca0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x79204a330d30>", "_predict": "<function ActorCriticPolicy._predict at 0x79204a330dc0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x79204a330e50>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x79204a330ee0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x79204a330f70>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x79204a4d7c80>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1696257132723951797, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADpjQj6Us6C8Ira5O9+tL7qeTw2+qIcEuwAAgD8AAIA/sxo0Pswepz5bQZE8be7EvohsXT3eeCm9AAAAAAAAAABGFz8+WzyZvMtwdbs5qMA5XAAMvk4apToAAIA/AACAPw3R271MKXY/oWarvmQ9R7/iefe9dzkavQAAAAAAAAAAs5MxPkHdg7zKI7G6e1T5ONOg6b06deg5AAAAAAAAgD+oIa2+CHOtPk7UOT59Wgy/EBvUvsu0PT4AAAAAAAAAAIAKq73XFBy7nmB/PEa6aDwejUS8PCNIPQAAAAAAAIA/JqPIPcP1Lbjt94kyR69rrrAoA7ytmwCzAAAAAAAAgD8NLgo+H/+1uzHvBT2lYFC7+P8EvX71MLwAAIA/AACAP0ZuJb5WOXI/Gtfivg4KP7+aN2u+S/T6vQAAAAAAAAAAhoegPl+koTxt7Hg8rYOfPFQCWT672XK9AACAPwAAgD/zeDY+cUNpP8emsT6EAkC/5uofPgzmxLwAAAAAAAAAAK0vdT43ZCQ/YuaSPiPdLL/PqJA+0X4VuwAAAAAAAAAAmqyePJUSWD9tA+s8Fkc/v9J1FD2N2m08AAAAAAAAAADNBpE8+5x3P6pQIT3vUzu/LuA9Pfz4QrwAAAAAAAAAAPMu472uKaW6EVRJPZd2EzU/sZ45U20NNAAAgD8AAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV+wsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHATK+FlCkaMAWyUS7SMAXSUR0CZ/ltVJcxCdX2UKGgGR0Bvbi68QI2PaAdLyGgIR0CaAC1rIo3KdX2UKGgGR0BwuCcEvCdjaAdLqGgIR0CaALGlANXpdX2UKGgGR0Bxl6GZeAuqaAdLsmgIR0CaAgZPl+3IdX2UKGgGR0BkBKeGwiaBaAdN6ANoCEdAmgM6jvd/KHV9lChoBkdAZO2Lb5/LDGgHTegDaAhHQJoDXbJwKjV1fZQoaAZHQHKDuueSSvFoB0vTaAhHQJoEIIkZ75V1fZQoaAZHQHDLJwjt5UtoB0vSaAhHQJoFAJPZZjh1fZQoaAZHQHJv03XI2floB00YAWgIR0CaBZlFMIu5dX2UKGgGR0BwEzrqt5lfaAdLyGgIR0CaBbXC0ngHdX2UKGgGR0Bd1duLrHENaAdN6ANoCEdAmgbWcriEQHV9lChoBkdAcHqdFvybx2gHS7doCEdAmgdDcynDSHV9lChoBkdAcVBhMajveGgHS+toCEdAmgiP9kz413V9lChoBkdAb5wcU/OdG2gHS8FoCEdAmgjPhqCYkXV9lChoBkdAcCFFc6eXiWgHS+JoCEdAmgshshxHXnV9lChoBkdAckcUS7GvOmgHS/ZoCEdAmgvwBDG96HV9lChoBkdAb6OFMZgogGgHTegCaAhHQJoL6S9ugpV1fZQoaAZHQGX02szVMEloB03oA2gIR0CaDMKjBVMmdX2UKGgGR0Bwfaw+t8u0aAdL4GgIR0CaDS0iyIHkdX2UKGgGR0Bauttygf2caAdN6ANoCEdAmg3I24uscXV9lChoBkdAciNpljEvTWgHS9xoCEdAmg3gMUh3aHV9lChoBkdAcR+7O3UhFGgHS79oCEdAmg6Say8jA3V9lChoBkdAcFTrksBhhGgHS7VoCEdAmg+m21D0DnV9lChoBkdAcKRS9ugpSmgHS65oCEdAmg+nmFJxvXV9lChoBkdAcSicawUxmGgHTUMBaAhHQJoR9Q1rIo51fZQoaAZHQHGfsbWEsatoB00gAWgIR0CaEgWFvhqCdX2UKGgGR0BwLqHYYixFaAdLxmgIR0CaFOWlMyrQdX2UKGgGR0BvnlXcQAdXaAdL3WgIR0CaFSjMV1wHdX2UKGgGR0BwGusxO+IuaAdL0GgIR0CaFdAOrhitdX2UKGgGR0BwP5AGB4D+aAdLyWgIR0CaFi9XcQAddX2UKGgGR0BvTgRsdkrgaAdLw2gIR0CaFtKaG5+ZdX2UKGgGR0BxoytT1kDqaAdL32gIR0CaF0aBI4EPdX2UKGgGR0ByxkFjd56daAdL6GgIR0CaGcrXlKbsdX2UKGgGR0BwVebAk9lmaAdLxmgIR0CaGuGzru6VdX2UKGgGR0BxAiLxZuAJaAdLyWgIR0CaGvWkrPMTdX2UKGgGR0BgsunsLORlaAdN6ANoCEdAmh8ckMTewnV9lChoBkdAcz7Nvfj0c2gHTcIBaAhHQJofYVj7Q9l1fZQoaAZHQHCbOYlY2bZoB0vfaAhHQJofl6Rhc7h1fZQoaAZHQG+YsAvL5h1oB0vIaAhHQJohIB6rvLJ1fZQoaAZHQHACW6ClJpZoB00HAWgIR0CaIe0Re1KHdX2UKGgGR0BxNbYAbQ1KaAdL82gIR0CaIoU34sVddX2UKGgGR0BnFcAHVwxWaAdN6ANoCEdAmiLWiDdxhnV9lChoBkdAdECX5FgDzWgHTSEBaAhHQJojSiWVu791fZQoaAZHQHFzI4hllK9oB0vJaAhHQJoj/gYP5Hp1fZQoaAZHQG9rBxgiNbVoB0vyaAhHQJoksNWluWN1fZQoaAZHQFzLHoX9BKNoB03oA2gIR0CaJSQlruYydX2UKGgGR0Bw+pFOO802aAdNTwFoCEdAmiUw22oegnV9lChoBkdAcUH/c32mHmgHS8hoCEdAmibMVpKzzHV9lChoBkdAN8CHZbpu/GgHS21oCEdAmidgc5sCT3V9lChoBkdAcg1RK6FuemgHS91oCEdAmieJA+pwTHV9lChoBkdAb1MmZVn27GgHS8BoCEdAmigE56t1ZHV9lChoBkdAcVrSIP9UCWgHS+toCEdAmijhGpda+3V9lChoBkdAcOwF85S3s2gHS85oCEdAmilVmvnr6nV9lChoBkdAcvo0u14PgGgHTSIBaAhHQJopbijtXxR1fZQoaAZHQG25e67NB4VoB0vRaAhHQJop3DuSfUZ1fZQoaAZHQFrD4jbBXS1oB03oA2gIR0CaKzE+gUUPdX2UKGgGR0BxeMRGtp22aAdL2GgIR0CaK64Vh1DCdX2UKGgGR0BuKuLm6oVEaAdL+WgIR0CaLMewcHW0dX2UKGgGR0BxoONm16VuaAdNIwFoCEdAmi2snJDE33V9lChoBkdAb9u3G4qgAmgHS+hoCEdAmi4AsTWXknV9lChoBkdAcOBDIikftGgHS9xoCEdAmi5nTy8SPHV9lChoBkdAcPGEHMUypWgHS9poCEdAmi7ZCrtE5XV9lChoBkdAb7bQ2MsH0WgHS8doCEdAmi8aClJpWXV9lChoBkdAcB61gYxcmmgHS9NoCEdAmi/z2SMcZXV9lChoBkdAcT6LqlgtvmgHTSoBaAhHQJowp+G47Rx1fZQoaAZHQHBLDopx3mpoB0vfaAhHQJowyA4GUwB1fZQoaAZHQHFyPyXlbNdoB0v5aAhHQJoxEOZssQN1fZQoaAZHQGF0iV0Lc9JoB03oA2gIR0CaMjHRkVesdX2UKGgGR0BwtIA80UGnaAdL5mgIR0CaMw6ciGFjdX2UKGgGR0Bxp6EmICU5aAdLzWgIR0CaNF/ATIvKdX2UKGgGR0BwF9Tzd1uBaAdLx2gIR0CaNPqU/wAmdX2UKGgGR0BhZoWepXIVaAdN6ANoCEdAmjVsdYGMXXV9lChoBkdAclCRCx/us2gHTTkBaAhHQJo1bWWhRIl1fZQoaAZHQHKZiq6vq1RoB0u6aAhHQJo2MAhje9B1fZQoaAZHQHChXVwxWT5oB0vZaAhHQJo2Re5WilB1fZQoaAZHQHBzB1LamGdoB0vhaAhHQJo2QjhUBGR1fZQoaAZHQHChZZwGW2RoB0u9aAhHQJo2/+GXXy11fZQoaAZHQHMwJTMqz7doB00qAWgIR0CaN4ZezD4ydX2UKGgGR0BvB/OdGy5aaAdLyGgIR0CaN41Tzd1udX2UKGgGR0ByAForWiDeaAdL3mgIR0CaN8hmoR7JdX2UKGgGR0Bu86zmfXf7aAdL02gIR0CaOMuYx+KCdX2UKGgGR0BxJbkMkQf7aAdLtmgIR0CaOkQpF1B/dX2UKGgGR0ByYT2L5ylvaAdLy2gIR0CaO0nPmgandX2UKGgGR0BxD+4oZydXaAdLtWgIR0CaO2ZvDP4VdX2UKGgGR0Bwj6KDTSb6aAdLvGgIR0CaO7dJJ5E/dX2UKGgGR0Bw5smD15B1aAdLsGgIR0CaPDLSNOuadX2UKGgGR0Bwa6/CZWq+aAdL62gIR0CaPFiYsunNdX2UKGgGR0BAeriuMdcTaAdLlmgIR0CaPE25hBqsdX2UKGgGR0BkC2Hck+otaAdN6ANoCEdAmjzypm29c3V9lChoBkdAcF++DvmYB2gHS79oCEdAmj1D2i+L33V9lChoBkdAcAlwMH8jzWgHTQABaAhHQJo92dFvybx1fZQoaAZHQHBx7LlmvntoB0vZaAhHQJo+CuX/o7p1fZQoaAZHQG2jLWRRuTBoB0u/aAhHQJpAQtXgccV1fZQoaAZHQHJvyKR+z+poB0v4aAhHQJpAkNYr8SB1fZQoaAZHQHC3I8yN4qxoB0vIaAhHQJpBw4EOiFl1fZQoaAZHQGHg8zImw7loB03oA2gIR0CaQgKPXCj2dX2UKGgGR0BwLNYzSCvpaAdLwmgIR0CaQgLfDUExdX2UKGgGR0BybE9hZyMlaAdLsGgIR0CaQgJrcj7idX2UKGgGR0BxK+RzRx95aAdL2GgIR0CaQmGNaQmvdX2UKGgGR0BwAvwRXfZVaAdLv2gIR0CaQnnL7oB8dWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 310, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}