File size: 1,497 Bytes
cd37b57
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0c8eff4
cd37b57
 
 
0c8eff4
cd37b57
 
 
0c8eff4
cd37b57
 
 
0c8eff4
 
cd37b57
 
 
b96845f
cd37b57
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
---
base_model: mistralai/Mistral-7B-v0.1
datasets:
- generator
library_name: peft
license: apache-2.0
tags:
- trl
- sft
- generated_from_trainer
model-index:
- name: mistral-7b-foodrecipe_v2
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# mistral-7b-foodrecipe_v2

This model is a fine-tuned version of [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) on the generator dataset.

## Model description

Input a food or dessert (EX: How can we make Miso-Butter Roast Chicken With Acorn Squash Panzanella). Returns a completion of sentences with the recipe of the food.

## Intended uses & limitations

For casual use.

## Training and evaluation data

Trained and evaluate on Jaspertw177/food_recipe_forLLM_2167947.

## Training procedure

Only used 200,000 rows in the training dataset with QLORA.

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 3
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 6
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant
- lr_scheduler_warmup_ratio: 0.03
- num_epochs: 1

### Training results



### Framework versions

- PEFT 0.11.1
- Transformers 4.42.4
- Pytorch 2.3.1+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1