{"policy_class": {":type:": "", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "", "_get_constructor_parameters": "", "reset_noise": "", "_build_mlp_extractor": "", "_build": "", "forward": "", "extract_features": "", "_get_action_dist_from_latent": "", "_predict": "", "evaluate_actions": "", "get_distribution": "", "predict_values": "", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f625acbe2c0>"}, "verbose": 1, "policy_kwargs": {":type:": "", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1681213679351473784, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAyGED4yIqQ/PLOOPRct3b5GPkg/JDsuP05C+T4Oaoq/KzTeviUBM73WsAVAXh9gv6lKtb4xzRk/z3opPVK3qj0imRg/7Y+/P0f+NT/rYne/+Z49v120CD2Ybzw/8sU3PF57bz87rQY/CRf1PpahhT+ExoQ/dWIWQKdAEMCmtsu/bvs8vkRXXT1c1jG+gxHeP2kyB8At9po9JV+yvdaKvLzNs6a/uNjCO1Dbur/jYfM94N7ev5O58L3mCSvAA4+tPItEnL54XLG+0RQfvwfZy7xee28/O60GPwkX9T5SNnW/P9Y4Po0mPj9l1+w+vVigvzjNfr3HVDQ9g1gXP0NMFL8/ebG/kUGlP8YtA0B8fmw/lWlZPtUNhL/iojM+w8a1PyiWR79qGCO/kCh8P27+XD82Bdk/wL+Rv+k+qz7nryk/XntvPwJP878JF/U+UjZ1v1bJNj/nC9E+W4QRP3NizT+G4Hs+cC2mP6UW3D7+BQO/xNULP5UmQr+eJUQ/o+zSv1kyLL/+ApM/dJkxv1oICz8gBoG+Gx+PP6e20j5S5ynANQdBv4gvBD7MoHI/4OXVPibUiL87rQY/CRf1PlI2db+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAACLIyk3AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAFbrDvQAAAABKVdy/AAAAAKb7AT4AAAAAYTkAQAAAAACJfsY9AAAAAGTR5z8AAAAAS7fkvQAAAAB1lv2/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAXtGrNQAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgICtsbsAAAAACpnkvwAAAAAW1q49AAAAAO5TAUAAAAAAXxq+PQAAAABNTtw/AAAAAN0//T0AAAAA9VvuvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABm3VrYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIBMVQg+AAAAAKgp4r8AAAAAMI5ePAAAAAAsDvI/AAAAAL+tn70AAAAARKf1PwAAAACuP2i9AAAAABKB9r8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABfNzo2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAWUS6PQAAAABKIem/AAAAALJBtT0AAAAA5IXjPwAAAABTPOY9AAAAADdx3T8AAAAA2WAZvAAAAACN4/a/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "", ":serialized:": "gAWVQgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJtFyF49ovmMAWyUTegDjAF0lEdArRC0DU3GXHV9lChoBkdAmrHNqYZ2p2gHTegDaAhHQK0XIcc2itd1fZQoaAZHQJY9chC+lCVoB03oA2gIR0CtF3c2BJ7LdX2UKGgGR0Cekz5S3solaAdN6ANoCEdArRwd7Y02tXV9lChoBkdAnl6IdU83dmgHTegDaAhHQK0gpgZTAFh1fZQoaAZHQJnWGZfD1oRoB03oA2gIR0CtJKq9XcQAdX2UKGgGR0CdgWqmj0tiaAdN6ANoCEdArSTi1Vo6CHV9lChoBkfAIbX+uNgjQmgHS5hoCEdArSbZL0z0pXV9lChoBkdAmQuPMKTjemgHTegDaAhHQK0pQ5WilBR1fZQoaAZHQJ3IFR3u/lBoB03oA2gIR0CtLtDbBXS0dX2UKGgGR0CeqBL5ylvZaAdN6ANoCEdArTUA7eVLSXV9lChoBkdAnjd2dqcmSmgHTegDaAhHQK04PCu2ZzB1fZQoaAZHQHzlwwoLG71oB00oAWgIR0CtOggoG6f8dX2UKGgGR0BHUGax5cC6aAdLoGgIR0CtOn6sySFHdX2UKGgGR0CdKIvSc9W7aAdN6ANoCEdArTq/LNfPX3V9lChoBkdAl7aLj94u9WgHTegDaAhHQK0/WhY/3WZ1fZQoaAZHQJt6YytV7yBoB03oA2gIR0CtR2S26TW5dX2UKGgGR0Cal0uscQyzaAdN6ANoCEdArUfTlFMIvHV9lChoBkdAnO1qj8DSxGgHTegDaAhHQK1IFLzwtrd1fZQoaAZHQJh9Lr5ZbINoB03oA2gIR0CtTXeTvAoHdX2UKGgGR0CckoMcIZ62aAdN6ANoCEdArVhS+BYms3V9lChoBkdAmu47D63y7WgHTegDaAhHQK1YwpCKJl91fZQoaAZHQJx0AFB6a9doB03oA2gIR0CtWP3Cj1wpdX2UKGgGR0CZW5ozN2TxaAdN6ANoCEdArV1tRLsa9HV9lChoBkdAn1MZXIU8FWgHTegDaAhHQK1lSka/ATJ1fZQoaAZHQJ7cuOtGNJhoB03oA2gIR0CtZbncL0BfdX2UKGgGR0CgMz0wrUb2aAdN6ANoCEdArWX09wFTvXV9lChoBkdAn/u98VpKz2gHTegDaAhHQK1q6UyHmA91fZQoaAZHQJxhtzV+Zw5oB03oA2gIR0CtdgYigTRIdX2UKGgGR0CW8tDzAeq8aAdN6ANoCEdArXZ4KYzBRHV9lChoBkdAn5P1xn3+M2gHTegDaAhHQK12uxQizLR1fZQoaAZHQJtT2XJHRTloB03oA2gIR0CtewZz5oGqdX2UKGgGR0CgYbzt9hJAaAdN6ANoCEdArYK+qtHQQnV9lChoBkdAndU6J66as2gHTegDaAhHQK2DLN47ihp1fZQoaAZHQKBCxOzIFNdoB03oA2gIR0Ctg2UwrUb2dX2UKGgGR0CgLpQSamXPaAdN6ANoCEdArYfRtHhCMXV9lChoBkdAm8Fp2Qnx8WgHTegDaAhHQK2TL6lchTx1fZQoaAZHQKB0d0voNd9oB03oA2gIR0Ctk6nuiN83dX2UKGgGR0Ca4hPjn3cpaAdN6ANoCEdArZPoKUmlZXV9lChoBkdAne1ja4+bE2gHTegDaAhHQK2Yhph4MWp1fZQoaAZHQJ1Ymef7JnxoB03oA2gIR0CtoGEu6ErYdX2UKGgGR0CfluOZ9d/saAdN6ANoCEdAraDRaPjn3nV9lChoBkdAnhhA+EAYHmgHTegDaAhHQK2hEPy08eV1fZQoaAZHQJyJFpnHvMNoB03oA2gIR0Ctpahjvuw5dX2UKGgGR0Ccvu9+PRzBaAdN6ANoCEdArbDtpsXSB3V9lChoBkdAnGHyjpLVWmgHTegDaAhHQK2xm/C66J91fZQoaAZHQJra/Prv9cdoB03oA2gIR0CtsgIkJKJ3dX2UKGgGR0Ccl+JKJ2t/aAdN6ANoCEdArbbOCPIXCXV9lChoBkdAnSRYbwSamWgHTegDaAhHQK2+9/J/5L11fZQoaAZHQJ6JZnTRYzVoB03oA2gIR0Ctv26KDTScdX2UKGgGR0CVj1TF2mpEaAdN6ANoCEdArb+rUqhDgXV9lChoBkdAnZO7pzLfUGgHTegDaAhHQK3EK2+fywx1fZQoaAZHQJnCkzhxYJVoB03oA2gIR0Ctzwdv0h/zdX2UKGgGR0CdCHeRgZ0kaAdN6ANoCEdArc+sQTVUdnV9lChoBkdAm1myVGCqZWgHTegDaAhHQK3QDKwpvxZ1fZQoaAZHQJ3FU/GEPDpoB03oA2gIR0Ct1Qf8VHnVdX2UKGgGR0CdObfD1oQGaAdN6ANoCEdArd0PDxb0OHV9lChoBkdAmlYu23KB/mgHTegDaAhHQK3dhXmvGId1fZQoaAZHQJ3/u04R28toB03oA2gIR0Ct3cORT0g9dX2UKGgGR0CcV5rMTviMaAdN6ANoCEdAreJcUKzAvnV9lChoBkdAn2WYcrAgxWgHTegDaAhHQK3tErH2h7F1fZQoaAZHQJo3yT4cm0FoB03oA2gIR0Ct7bd8Aq/edX2UKGgGR0CdFIxFAmiQaAdN6ANoCEdAre4TDQ7cPHV9lChoBkdAmh4e1ndwemgHTegDaAhHQK3y4gHNX5p1fZQoaAZHQKAoDHmRvFZoB03oA2gIR0Ct+qeB6KLsdX2UKGgGR0CgjFGcvugIaAdN6ANoCEdArfsSf4AS4HV9lChoBkdAn6Gc6zVtoGgHTegDaAhHQK37UFcIJJJ1fZQoaAZHQJsQ2dZq20BoB03oA2gIR0Ct/9jpkf9xdX2UKGgGR0CZQ56WPcSHaAdN6ANoCEdArgnkZrHlwXV9lChoBkdAmVBsfeUILWgHTegDaAhHQK4Kk+B6KLt1fZQoaAZHQJ0JrH93r2RoB03oA2gIR0CuCvvTgEU1dX2UKGgGR0Cc5eLqD9OzaAdN6ANoCEdArhCiKP4mC3V9lChoBkdAnHdTsdDIBGgHTegDaAhHQK4YuRFqi491fZQoaAZHQJUMXXyy2QZoB03oA2gIR0CuGTINNJvpdX2UKGgGR0CYgDbr1M/RaAdN6ANoCEdArhlz0th/iHV9lChoBkdAleXg9RrJsGgHTegDaAhHQK4eNb5/LDB1fZQoaAZHQJW8caHbh3toB03oA2gIR0CuKFFSjxkNdX2UKGgGR0CXGpwHZ9NOaAdN6ANoCEdArikBYkmhNHV9lChoBkdAm9YmuDBdlmgHTegDaAhHQK4pZmQKa5R1fZQoaAZHQJ1TUFyJbdJoB03oA2gIR0CuLw3L3bmEdX2UKGgGR0CYqJaBqbjMaAdN6ANoCEdArjcsMXrMT3V9lChoBkdAmp523rleW2gHTegDaAhHQK43pZ+x4Y91fZQoaAZHQJSYUrupjtpoB03oA2gIR0CuN+U/GEPEdX2UKGgGR0CZ/wxaPjn3aAdN6ANoCEdArjyt/QSi/XV9lChoBkdAoHCDWqcVg2gHTegDaAhHQK5GwTpxFRZ1fZQoaAZHQKC2FakhzNloB03oA2gIR0CuR3OaF23bdX2UKGgGR0CbAVV8CxNZaAdN6ANoCEdArkfR6Skj5nV9lChoBkdAmK+uUILPU2gHTegDaAhHQK5NgPnSv1V1fZQoaAZHQJ0AVz2exwBoB03oA2gIR0CuVXZVXFLndX2UKGgGR0CNrzV7x/d7aAdN6ANoCEdArlXlurIYFnV9lChoBkdAnrQg8SwnpmgHTegDaAhHQK5WJEF4cFR1fZQoaAZHQJXV9nK4hEBoB03oA2gIR0CuWuDHGS6ldX2UKGgGR0CdIGWYnfEXaAdN6ANoCEdArmR+biIcinV9lChoBkdAm1CteQdS22gHTegDaAhHQK5lLu63AmB1fZQoaAZHQJs+8r/bTMJoB03oA2gIR0CuZZcNYr8SdX2UKGgGR0CdqzvVVghKaAdN6ANoCEdArmt1Frl/6XV9lChoBkdAnEjHZkCmuWgHTegDaAhHQK5zRMM7U5N1fZQoaAZHQKAH/9xZMcpoB03oA2gIR0Cuc7HMUypJdX2UKGgGR0CdkTEnLJS0aAdN6ANoCEdArnPzSw4bTHV9lChoBkdAnR/oqoZQ52gHTegDaAhHQK54etf5ULl1ZS4="}, "ep_success_buffer": {":type:": "", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.0+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}