--- license: apache-2.0 base_model: google/vit-base-patch16-224 tags: - generated_from_trainer datasets: - image_folder metrics: - accuracy model-index: - name: vit_base_patch16_224-finetuned-SkinDisease results: - task: name: Image Classification type: image-classification dataset: name: image_folder type: image_folder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.9342629482071713 --- # vit_base_patch16_224-finetuned-SkinDisease This model is a fine-tuned version of [google/vit-base-patch16-224](https://huggingface.co/google/vit-base-patch16-224) on the image_folder dataset. It achieves the following results on the evaluation set: - Loss: 0.1992 - Accuracy: 0.9343 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.9099 | 1.0 | 282 | 0.8248 | 0.7647 | | 0.5848 | 2.0 | 565 | 0.4236 | 0.8748 | | 0.3952 | 3.0 | 847 | 0.3154 | 0.9021 | | 0.3957 | 4.0 | 1130 | 0.2695 | 0.9106 | | 0.3146 | 5.0 | 1412 | 0.2381 | 0.9198 | | 0.2883 | 6.0 | 1695 | 0.2407 | 0.9218 | | 0.2264 | 7.0 | 1977 | 0.2160 | 0.9278 | | 0.2339 | 8.0 | 2260 | 0.2121 | 0.9283 | | 0.1966 | 9.0 | 2542 | 0.2044 | 0.9303 | | 0.2366 | 9.98 | 2820 | 0.1992 | 0.9343 | ### Framework versions - Transformers 4.33.2 - Pytorch 2.0.0 - Datasets 2.1.0 - Tokenizers 0.13.3