Jaykintecblic
commited on
Commit
•
9a42ebe
1
Parent(s):
09067ad
Create handler.py
Browse files- handler.py +64 -0
handler.py
ADDED
@@ -0,0 +1,64 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Dict, List, Any
|
2 |
+
from PIL import Image
|
3 |
+
import torch
|
4 |
+
from transformers import AutoModelForCausalLM, AutoProcessor
|
5 |
+
from transformers.image_utils import to_numpy_array, PILImageResampling, ChannelDimension
|
6 |
+
from transformers.image_transforms import resize, to_channel_dimension_format
|
7 |
+
|
8 |
+
class CustomPipeline:
|
9 |
+
def __init__(self, model_path: str, api_token: str):
|
10 |
+
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
11 |
+
self.processor = AutoProcessor.from_pretrained(
|
12 |
+
model_path,
|
13 |
+
token=api_token
|
14 |
+
)
|
15 |
+
self.model = AutoModelForCausalLM.from_pretrained(
|
16 |
+
model_path,
|
17 |
+
token=api_token,
|
18 |
+
trust_remote_code=True,
|
19 |
+
torch_dtype=torch.bfloat16,
|
20 |
+
).to(self.device)
|
21 |
+
self.image_seq_len = self.model.config.perceiver_config.resampler_n_latents
|
22 |
+
self.bos_token = self.processor.tokenizer.bos_token
|
23 |
+
self.bad_words_ids = self.processor.tokenizer(["<image>", "<fake_token_around_image>"], add_special_tokens=False).input_ids
|
24 |
+
|
25 |
+
def convert_to_rgb(self, image: Image.Image) -> Image.Image:
|
26 |
+
if image.mode == "RGB":
|
27 |
+
return image
|
28 |
+
image_rgba = image.convert("RGBA")
|
29 |
+
background = Image.new("RGBA", image_rgba.size, (255, 255, 255))
|
30 |
+
alpha_composite = Image.alpha_composite(background, image_rgba)
|
31 |
+
alpha_composite = alpha_composite.convert("RGB")
|
32 |
+
return alpha_composite
|
33 |
+
|
34 |
+
def custom_transform(self, image: Image.Image) -> torch.Tensor:
|
35 |
+
image = self.convert_to_rgb(image)
|
36 |
+
image = to_numpy_array(image)
|
37 |
+
image = resize(image, (960, 960), resample=PILImageResampling.BILINEAR)
|
38 |
+
image = self.processor.image_processor.rescale(image, scale=1 / 255)
|
39 |
+
image = self.processor.image_processor.normalize(
|
40 |
+
image,
|
41 |
+
mean=self.processor.image_processor.image_mean,
|
42 |
+
std=self.processor.image_processor.image_std
|
43 |
+
)
|
44 |
+
image = to_channel_dimension_format(image, ChannelDimension.FIRST)
|
45 |
+
return torch.tensor(image)
|
46 |
+
|
47 |
+
def __call__(self, data: Dict[str, Any]) -> Dict[str, Any]:
|
48 |
+
image = data.get("inputs")
|
49 |
+
|
50 |
+
if isinstance(image, str):
|
51 |
+
image = Image.open(image)
|
52 |
+
|
53 |
+
inputs = self.processor.tokenizer(
|
54 |
+
f"{self.bos_token}<fake_token_around_image>{'<image>' * self.image_seq_len}<fake_token_around_image>",
|
55 |
+
return_tensors="pt",
|
56 |
+
add_special_tokens=False,
|
57 |
+
)
|
58 |
+
inputs["pixel_values"] = self.processor.image_processor([image], transform=self.custom_transform)
|
59 |
+
inputs = {k: v.to(self.device) for k, v in inputs.items()}
|
60 |
+
|
61 |
+
generated_ids = self.model.generate(**inputs, bad_words_ids=self.bad_words_ids, max_length=4096)
|
62 |
+
generated_text = self.processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
63 |
+
|
64 |
+
return {"text": generated_text}
|