Jbot commited on
Commit
d2b1bce
·
1 Parent(s): 4d9158f

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - AntBulletEnv-v0
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: AntBulletEnv-v0
16
+ type: AntBulletEnv-v0
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 1265.85 +/- 41.03
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **AntBulletEnv-v0**
25
+ This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-AntBulletEnv-v0.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:072e73079fca2ab8203b839e3e715533ae39692ba872eb74e24918d22572ac2e
3
+ size 129260
a2c-AntBulletEnv-v0/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
a2c-AntBulletEnv-v0/data ADDED
@@ -0,0 +1,106 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7fd4c52fbca0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fd4c52fbd30>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fd4c52fbdc0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fd4c52fbe50>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7fd4c52fbee0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7fd4c52fbf70>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fd4c5300040>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fd4c53000d0>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7fd4c5300160>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fd4c53001f0>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fd4c5300280>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fd4c5300310>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc_data object at 0x7fd4c52fa780>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {
24
+ ":type:": "<class 'dict'>",
25
+ ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
26
+ "log_std_init": -2,
27
+ "ortho_init": false,
28
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
29
+ "optimizer_kwargs": {
30
+ "alpha": 0.99,
31
+ "eps": 1e-05,
32
+ "weight_decay": 0
33
+ }
34
+ },
35
+ "observation_space": {
36
+ ":type:": "<class 'gym.spaces.box.Box'>",
37
+ ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
38
+ "dtype": "float32",
39
+ "_shape": [
40
+ 28
41
+ ],
42
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
43
+ "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
44
+ "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
45
+ "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
46
+ "_np_random": null
47
+ },
48
+ "action_space": {
49
+ ":type:": "<class 'gym.spaces.box.Box'>",
50
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
51
+ "dtype": "float32",
52
+ "_shape": [
53
+ 8
54
+ ],
55
+ "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
56
+ "high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
57
+ "bounded_below": "[ True True True True True True True True]",
58
+ "bounded_above": "[ True True True True True True True True]",
59
+ "_np_random": null
60
+ },
61
+ "n_envs": 4,
62
+ "num_timesteps": 2000000,
63
+ "_total_timesteps": 2000000,
64
+ "_num_timesteps_at_start": 0,
65
+ "seed": null,
66
+ "action_noise": null,
67
+ "start_time": 1674493845076360325,
68
+ "learning_rate": 0.00096,
69
+ "tensorboard_log": null,
70
+ "lr_schedule": {
71
+ ":type:": "<class 'function'>",
72
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
73
+ },
74
+ "_last_obs": {
75
+ ":type:": "<class 'numpy.ndarray'>",
76
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAEXUgL9NT5i/STkNv+BaIL7o6oY9wL4zP/3Gpz3ARhu9iwqUv8G7jT67pCy+wcvDPqNE7z5iEaE+w3YcPynEpTyBY3E/9kIivsEjuD6LBdM8rHtNvx9MGj452c++iI0OP8w1IT9/HaM+av8EP+HeXL9/PEu/4o51v3hzL76zrH49eleXPVlAAT8yMJC+NyvLPWyCEz6aDGk8nT8Ev0XvRj5Bo8W9YZ1av0TUGz89Z8M8xb33PgpqIL9oVu68umDgPT7KiL6e3GE95A2CPoAqx77MNSE/fx2jPmr/BD+8W5Q/FFWBv7odk78N+fK+3f5+P9I2OT/hPoW/vGDdPk7PTT+4csa/TdQfPWsZe7/EC0s/dhQXPmL2Ub7d6pC+kUY7P49xrD9oQce+3PIWP6Sbvr/sDl6/r8GZv/4uKr/AisK+PEPLv38doz5SYfa/vFuUP84q3zyHzi+/XMkWPmJZqT5ftZq/gd3rPjLPcD1qRxy/fnNQPicHWD/SGBg/lZK0vV6dRz+5r1C9FB4cP1Xs5DyDwDG+U0yGvjXu3D6ji3Y9QoL3vgkGBz/4hvy+oCQuvsw1IT9/HaM+av8EP+HeXL+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
77
+ },
78
+ "_last_episode_starts": {
79
+ ":type:": "<class 'numpy.ndarray'>",
80
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
81
+ },
82
+ "_last_original_obs": {
83
+ ":type:": "<class 'numpy.ndarray'>",
84
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAA/+YQyAACAPwAAAAAAAAAAAAAAAAAAAAAAAACA5be4PQAAAAA1vdy/AAAAAEFwnj0AAAAAK7zfPwAAAAD7E7E9AAAAAEED3D8AAAAAB8+WPQAAAAD1Uvi/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAArUAUtgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgJ3Uhb0AAAAAYfbqvwAAAAC/Cre9AAAAANod9T8AAAAAycs9vQAAAAA59eM/AAAAAC3z4jwAAAAAp7LqvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJmD8jMAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIBfR2Y9AAAAAHWH+b8AAAAAkCHpvQAAAADStfw/AAAAADPdMD0AAAAA7zbZPwAAAACp4wi+AAAAACer5L8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACR3Lm2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACATaerPQAAAAB98ve/AAAAABDa2jwAAAAAyrbqPwAAAABvUQu+AAAAAPku9j8AAAAAvUUmPQAAAAAcn+O/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
85
+ },
86
+ "_episode_num": 0,
87
+ "use_sde": true,
88
+ "sde_sample_freq": -1,
89
+ "_current_progress_remaining": 0.0,
90
+ "ep_info_buffer": {
91
+ ":type:": "<class 'collections.deque'>",
92
+ ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJPWE11nuiOMAWyUTegDjAF0lEdApnDdk+X7cnV9lChoBkdAlJcO3lS0jWgHTegDaAhHQKZyWpkwvg51fZQoaAZHQJGL5yzXz19oB03oA2gIR0CmcmCc5Ke1dX2UKGgGR0CShtdgv115aAdN6ANoCEdApnWYIOYplXV9lChoBkdAklZ/gvUSZmgHTegDaAhHQKZ8qIbfgrJ1fZQoaAZHQJIB2D28IzFoB03oA2gIR0CmfjEQ5FPSdX2UKGgGR0CTxDo/zJ6qaAdN6ANoCEdApn43HPu5SXV9lChoBkdAka77DEWIoGgHTegDaAhHQKaBTtFa0Qd1fZQoaAZHQJbFwuPFNtZoB03oA2gIR0CmiD8UuctodX2UKGgGR0CWUMgzguRLaAdN6ANoCEdAponCd4FA3XV9lChoBkdAlrcUkWykbmgHTegDaAhHQKaJyIZ62OR1fZQoaAZHQJdhCQQtjCpoB03oA2gIR0CmjOKRlpXZdX2UKGgGR0CV1BnVG0/oaAdN6ANoCEdAppQ9OfukUXV9lChoBkdAlUhu1v2oN2gHTegDaAhHQKaV0CjDbah1fZQoaAZHQJYaOAuqWC5oB03oA2gIR0CmldZnUUfxdX2UKGgGR0CXAHyJ9AooaAdN6ANoCEdAppjxJ9RaYHV9lChoBkdAllfOQdS2pmgHTegDaAhHQKaf1PZZjhF1fZQoaAZHQJYv6YCyQgdoB03oA2gIR0CmoUgUtZmqdX2UKGgGR0CW78tUGVzIaAdN6ANoCEdApqFO1v2oN3V9lChoBkdAlE+Rdld1MmgHTegDaAhHQKakbH+ZPVN1fZQoaAZHQI80m/nGKhtoB03oA2gIR0Cmq1GdRR/FdX2UKGgGR0CICfPu5SWJaAdN6ANoCEdApqzQOjIq9XV9lChoBkdAiEY9nK4hEGgHTegDaAhHQKas1fixVyZ1fZQoaAZHQIjx0aOxSpBoB03oA2gIR0Cmr++S8rZrdX2UKGgGR0CNQX642CNCaAdN6ANoCEdAprbg9eQdS3V9lChoBkdAfh1PUKArhGgHTegDaAhHQKa4aEnssxx1fZQoaAZHQIW62MwUQCloB03oA2gIR0CmuG5EDyOJdX2UKGgGR0CMDKp6yB07aAdN6ANoCEdApruHfZVXFXV9lChoBkdAkJ9WxY7q6mgHTegDaAhHQKbClAwfyPN1fZQoaAZHQITuY7HQyARoB03oA2gIR0CmxBNEXtSidX2UKGgGR0CP3YNayKNyaAdN6ANoCEdApsQZG2Cul3V9lChoBkdAi1RCD/VAiWgHTegDaAhHQKbHQyGi5/d1fZQoaAZHQJA1qCyyD7JoB03oA2gIR0CmzxmbCrLhdX2UKGgGR0CWg6JiAlOXaAdN6ANoCEdAptCpYxL0z3V9lChoBkdAjHj/gJkXlGgHTegDaAhHQKbQr6LOzIF1fZQoaAZHQJADapn6EaloB03oA2gIR0Cm0+4lIEr5dX2UKGgGR0CQO+n9NvfkaAdN6ANoCEdAptsdt2s7uHV9lChoBkdAmCyQ+lj3EmgHTegDaAhHQKbcnlQuVX51fZQoaAZHQJYTGJwbVBloB03oA2gIR0Cm3KTDn/1hdX2UKGgGR0CVvRL+xW1daAdN6ANoCEdApt/Jqh11XHV9lChoBkdAkt3jkU9IPWgHTegDaAhHQKbmq9kjHGV1fZQoaAZHQJHFrigkC3hoB03oA2gIR0Cm6C8zhxYJdX2UKGgGR0CROf5Ec81XaAdN6ANoCEdApug1FSbYsnV9lChoBkdAh1cZVXFLnWgHTegDaAhHQKbrWG8mKIl1fZQoaAZHQIQjoatLcsVoB03oA2gIR0Cm8lKU/wAmdX2UKGgGR0CIeiYKpkwwaAdN6ANoCEdApvPSoXKr73V9lChoBkdAil72L5ylvmgHTegDaAhHQKbz2H+qBEt1fZQoaAZHQImfu7QLNOdoB03oA2gIR0Cm9u7kGRmsdX2UKGgGR0CRu8F3Y+SsaAdN6ANoCEdApv3Yx+KCQXV9lChoBkdAkkv1uaWonGgHTegDaAhHQKb/YFAVwgl1fZQoaAZHQJI9B3qzJIVoB03oA2gIR0Cm/2a9CeEqdX2UKGgGR0CUyVHG0eEJaAdN6ANoCEdApwKNke6qbXV9lChoBkdAkkyGT5ftyGgHTegDaAhHQKcJpSzgMtt1fZQoaAZHQIdkt2JSBLBoB03oA2gIR0CnCyBbwBo3dX2UKGgGR0CRHdRbbDdhaAdN6ANoCEdApwsmTJQtSXV9lChoBkdAkuruCf6Gg2gHTegDaAhHQKcOQy+HrQh1fZQoaAZHQJQiHbN8ma9oB03oA2gIR0CnFU5ylvZRdX2UKGgGR0CRlrhvBJqZaAdN6ANoCEdApxbQnc+JQHV9lChoBkdAkYmFCgK4QWgHTegDaAhHQKcW1ofSx7l1fZQoaAZHQI/7i46Oo5xoB03oA2gIR0CnGfkRJ2+xdX2UKGgGR0CShZXKr7wbaAdN6ANoCEdApyDttsN2DHV9lChoBkdAldMmyPdVN2gHTegDaAhHQKcicXyAhB91fZQoaAZHQId8MDuBtk5oB03oA2gIR0CnInfAKv3bdX2UKGgGR0CTt+QOnVG1aAdN6ANoCEdApyWtSsKb8XV9lChoBkdAdzHRF7Uoa2gHTegDaAhHQKcsljXnQpp1fZQoaAZHQI4sNSAH3URoB03oA2gIR0CnLhg57w8XdX2UKGgGR0CQ8Mf8/D+BaAdN6ANoCEdApy4eo1k1/HV9lChoBkdAkRJEhNdqtmgHTegDaAhHQKcxQY64lQd1fZQoaAZHQJHihzgdfb9oB03oA2gIR0CnODll9SdfdX2UKGgGR0CRGtZk078vaAdN6ANoCEdApzm5mseXA3V9lChoBkdAkDg89wFTvWgHTegDaAhHQKc5wPPLPld1fZQoaAZHQJJjHa6BiCtoB03oA2gIR0CnPOEidJ8OdX2UKGgGR0CSIyIC2c8UaAdN6ANoCEdAp0STRfF72XV9lChoBkdAkepoHX2/SGgHTegDaAhHQKdGTN2TxG51fZQoaAZHQJGoSL4vexhoB03oA2gIR0CnRlMpobn6dX2UKGgGR0CIefFZxJd0aAdN6ANoCEdAp0mMS26TXHV9lChoBkdAkdtB+BpYcWgHTegDaAhHQKdRS8+Royt1fZQoaAZHQJH8m49X9zhoB03oA2gIR0CnUtlar3j/dX2UKGgGR0CRZVEeyRjjaAdN6ANoCEdAp1Lgmois4nV9lChoBkdAkXZOrlvIfmgHTegDaAhHQKdWG0Jng511fZQoaAZHQJOaBNATqSpoB03oA2gIR0CnXPYYJmdzdX2UKGgGR0CUEBLOiWVvaAdN6ANoCEdAp158DyOJcnV9lChoBkdAkmRU7bL2YmgHTegDaAhHQKdeghIvrW11fZQoaAZHQJShNXV9Wp9oB03oA2gIR0CnYa+GGmDUdX2UKGgGR0CVBigwXZXdaAdN6ANoCEdAp2iq4OMER3V9lChoBkdAlSndgKF7D2gHTegDaAhHQKdqOJ0nw5N1fZQoaAZHQJKdlqveP7xoB03oA2gIR0Cnaj6sZHd5dX2UKGgGR0CVXIGp++dtaAdN6ANoCEdAp21tV94NZ3V9lChoBkdAlBsNayKNymgHTegDaAhHQKd0bmWdEst1fZQoaAZHQJOf2qfe1rtoB03oA2gIR0Cndf3IMjNZdX2UKGgGR0CUB2MUAT7EaAdN6ANoCEdAp3YE2BJ7LXV9lChoBkdAlcB/Olfqo2gHTegDaAhHQKd5KOWBz3h1fZQoaAZHQJOdNrdnCfpoB03oA2gIR0CngBjLr5ZbdX2UKGgGR0CVWqjdHlOoaAdN6ANoCEdAp4GVCNS62HV9lChoBkdAloTe0CzTnmgHTegDaAhHQKeBm0+C9RJ1fZQoaAZHQJPW3K0UoKFoB03oA2gIR0CnhLQbEP1+dX2UKGgGR0CUznR3/xUeaAdN6ANoCEdAp4v6pgkTpXV9lChoBkdAk93rOeJ53WgHTegDaAhHQKeNg1uzhP11fZQoaAZHQJI91wzch1VoB03oA2gIR0CnjYmUW2w3dX2UKGgGR0CSRuw9q1w6aAdN6ANoCEdAp5Cs2kzoEHVlLg=="
93
+ },
94
+ "ep_success_buffer": {
95
+ ":type:": "<class 'collections.deque'>",
96
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
97
+ },
98
+ "_n_updates": 62500,
99
+ "n_steps": 8,
100
+ "gamma": 0.99,
101
+ "gae_lambda": 0.9,
102
+ "ent_coef": 0.0,
103
+ "vf_coef": 0.4,
104
+ "max_grad_norm": 0.5,
105
+ "normalize_advantage": false
106
+ }
a2c-AntBulletEnv-v0/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f3374e3ff7251536ec05532969a43c3bc59cf13d0cdabd3721e513cb473d1ba2
3
+ size 56190
a2c-AntBulletEnv-v0/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:21d653e9c4ed3b91dcff7a95843128ea389d07a9cb5bef64becd6c3413598798
3
+ size 56958
a2c-AntBulletEnv-v0/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-AntBulletEnv-v0/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.8.10
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.21.6
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fd4c52fbca0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fd4c52fbd30>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fd4c52fbdc0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fd4c52fbe50>", "_build": "<function ActorCriticPolicy._build at 0x7fd4c52fbee0>", "forward": "<function ActorCriticPolicy.forward at 0x7fd4c52fbf70>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fd4c5300040>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fd4c53000d0>", "_predict": "<function ActorCriticPolicy._predict at 0x7fd4c5300160>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fd4c53001f0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fd4c5300280>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fd4c5300310>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fd4c52fa780>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1674493845076360325, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAEXUgL9NT5i/STkNv+BaIL7o6oY9wL4zP/3Gpz3ARhu9iwqUv8G7jT67pCy+wcvDPqNE7z5iEaE+w3YcPynEpTyBY3E/9kIivsEjuD6LBdM8rHtNvx9MGj452c++iI0OP8w1IT9/HaM+av8EP+HeXL9/PEu/4o51v3hzL76zrH49eleXPVlAAT8yMJC+NyvLPWyCEz6aDGk8nT8Ev0XvRj5Bo8W9YZ1av0TUGz89Z8M8xb33PgpqIL9oVu68umDgPT7KiL6e3GE95A2CPoAqx77MNSE/fx2jPmr/BD+8W5Q/FFWBv7odk78N+fK+3f5+P9I2OT/hPoW/vGDdPk7PTT+4csa/TdQfPWsZe7/EC0s/dhQXPmL2Ub7d6pC+kUY7P49xrD9oQce+3PIWP6Sbvr/sDl6/r8GZv/4uKr/AisK+PEPLv38doz5SYfa/vFuUP84q3zyHzi+/XMkWPmJZqT5ftZq/gd3rPjLPcD1qRxy/fnNQPicHWD/SGBg/lZK0vV6dRz+5r1C9FB4cP1Xs5DyDwDG+U0yGvjXu3D6ji3Y9QoL3vgkGBz/4hvy+oCQuvsw1IT9/HaM+av8EP+HeXL+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAA/+YQyAACAPwAAAAAAAAAAAAAAAAAAAAAAAACA5be4PQAAAAA1vdy/AAAAAEFwnj0AAAAAK7zfPwAAAAD7E7E9AAAAAEED3D8AAAAAB8+WPQAAAAD1Uvi/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAArUAUtgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgJ3Uhb0AAAAAYfbqvwAAAAC/Cre9AAAAANod9T8AAAAAycs9vQAAAAA59eM/AAAAAC3z4jwAAAAAp7LqvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJmD8jMAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIBfR2Y9AAAAAHWH+b8AAAAAkCHpvQAAAADStfw/AAAAADPdMD0AAAAA7zbZPwAAAACp4wi+AAAAACer5L8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACR3Lm2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACATaerPQAAAAB98ve/AAAAABDa2jwAAAAAyrbqPwAAAABvUQu+AAAAAPku9j8AAAAAvUUmPQAAAAAcn+O/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJPWE11nuiOMAWyUTegDjAF0lEdApnDdk+X7cnV9lChoBkdAlJcO3lS0jWgHTegDaAhHQKZyWpkwvg51fZQoaAZHQJGL5yzXz19oB03oA2gIR0CmcmCc5Ke1dX2UKGgGR0CShtdgv115aAdN6ANoCEdApnWYIOYplXV9lChoBkdAklZ/gvUSZmgHTegDaAhHQKZ8qIbfgrJ1fZQoaAZHQJIB2D28IzFoB03oA2gIR0CmfjEQ5FPSdX2UKGgGR0CTxDo/zJ6qaAdN6ANoCEdApn43HPu5SXV9lChoBkdAka77DEWIoGgHTegDaAhHQKaBTtFa0Qd1fZQoaAZHQJbFwuPFNtZoB03oA2gIR0CmiD8UuctodX2UKGgGR0CWUMgzguRLaAdN6ANoCEdAponCd4FA3XV9lChoBkdAlrcUkWykbmgHTegDaAhHQKaJyIZ62OR1fZQoaAZHQJdhCQQtjCpoB03oA2gIR0CmjOKRlpXZdX2UKGgGR0CV1BnVG0/oaAdN6ANoCEdAppQ9OfukUXV9lChoBkdAlUhu1v2oN2gHTegDaAhHQKaV0CjDbah1fZQoaAZHQJYaOAuqWC5oB03oA2gIR0CmldZnUUfxdX2UKGgGR0CXAHyJ9AooaAdN6ANoCEdAppjxJ9RaYHV9lChoBkdAllfOQdS2pmgHTegDaAhHQKaf1PZZjhF1fZQoaAZHQJYv6YCyQgdoB03oA2gIR0CmoUgUtZmqdX2UKGgGR0CW78tUGVzIaAdN6ANoCEdApqFO1v2oN3V9lChoBkdAlE+Rdld1MmgHTegDaAhHQKakbH+ZPVN1fZQoaAZHQI80m/nGKhtoB03oA2gIR0Cmq1GdRR/FdX2UKGgGR0CICfPu5SWJaAdN6ANoCEdApqzQOjIq9XV9lChoBkdAiEY9nK4hEGgHTegDaAhHQKas1fixVyZ1fZQoaAZHQIjx0aOxSpBoB03oA2gIR0Cmr++S8rZrdX2UKGgGR0CNQX642CNCaAdN6ANoCEdAprbg9eQdS3V9lChoBkdAfh1PUKArhGgHTegDaAhHQKa4aEnssxx1fZQoaAZHQIW62MwUQCloB03oA2gIR0CmuG5EDyOJdX2UKGgGR0CMDKp6yB07aAdN6ANoCEdApruHfZVXFXV9lChoBkdAkJ9WxY7q6mgHTegDaAhHQKbClAwfyPN1fZQoaAZHQITuY7HQyARoB03oA2gIR0CmxBNEXtSidX2UKGgGR0CP3YNayKNyaAdN6ANoCEdApsQZG2Cul3V9lChoBkdAi1RCD/VAiWgHTegDaAhHQKbHQyGi5/d1fZQoaAZHQJA1qCyyD7JoB03oA2gIR0CmzxmbCrLhdX2UKGgGR0CWg6JiAlOXaAdN6ANoCEdAptCpYxL0z3V9lChoBkdAjHj/gJkXlGgHTegDaAhHQKbQr6LOzIF1fZQoaAZHQJADapn6EaloB03oA2gIR0Cm0+4lIEr5dX2UKGgGR0CQO+n9NvfkaAdN6ANoCEdAptsdt2s7uHV9lChoBkdAmCyQ+lj3EmgHTegDaAhHQKbcnlQuVX51fZQoaAZHQJYTGJwbVBloB03oA2gIR0Cm3KTDn/1hdX2UKGgGR0CVvRL+xW1daAdN6ANoCEdApt/Jqh11XHV9lChoBkdAkt3jkU9IPWgHTegDaAhHQKbmq9kjHGV1fZQoaAZHQJHFrigkC3hoB03oA2gIR0Cm6C8zhxYJdX2UKGgGR0CROf5Ec81XaAdN6ANoCEdApug1FSbYsnV9lChoBkdAh1cZVXFLnWgHTegDaAhHQKbrWG8mKIl1fZQoaAZHQIQjoatLcsVoB03oA2gIR0Cm8lKU/wAmdX2UKGgGR0CIeiYKpkwwaAdN6ANoCEdApvPSoXKr73V9lChoBkdAil72L5ylvmgHTegDaAhHQKbz2H+qBEt1fZQoaAZHQImfu7QLNOdoB03oA2gIR0Cm9u7kGRmsdX2UKGgGR0CRu8F3Y+SsaAdN6ANoCEdApv3Yx+KCQXV9lChoBkdAkkv1uaWonGgHTegDaAhHQKb/YFAVwgl1fZQoaAZHQJI9B3qzJIVoB03oA2gIR0Cm/2a9CeEqdX2UKGgGR0CUyVHG0eEJaAdN6ANoCEdApwKNke6qbXV9lChoBkdAkkyGT5ftyGgHTegDaAhHQKcJpSzgMtt1fZQoaAZHQIdkt2JSBLBoB03oA2gIR0CnCyBbwBo3dX2UKGgGR0CRHdRbbDdhaAdN6ANoCEdApwsmTJQtSXV9lChoBkdAkuruCf6Gg2gHTegDaAhHQKcOQy+HrQh1fZQoaAZHQJQiHbN8ma9oB03oA2gIR0CnFU5ylvZRdX2UKGgGR0CRlrhvBJqZaAdN6ANoCEdApxbQnc+JQHV9lChoBkdAkYmFCgK4QWgHTegDaAhHQKcW1ofSx7l1fZQoaAZHQI/7i46Oo5xoB03oA2gIR0CnGfkRJ2+xdX2UKGgGR0CShZXKr7wbaAdN6ANoCEdApyDttsN2DHV9lChoBkdAldMmyPdVN2gHTegDaAhHQKcicXyAhB91fZQoaAZHQId8MDuBtk5oB03oA2gIR0CnInfAKv3bdX2UKGgGR0CTt+QOnVG1aAdN6ANoCEdApyWtSsKb8XV9lChoBkdAdzHRF7Uoa2gHTegDaAhHQKcsljXnQpp1fZQoaAZHQI4sNSAH3URoB03oA2gIR0CnLhg57w8XdX2UKGgGR0CQ8Mf8/D+BaAdN6ANoCEdApy4eo1k1/HV9lChoBkdAkRJEhNdqtmgHTegDaAhHQKcxQY64lQd1fZQoaAZHQJHihzgdfb9oB03oA2gIR0CnODll9SdfdX2UKGgGR0CRGtZk078vaAdN6ANoCEdApzm5mseXA3V9lChoBkdAkDg89wFTvWgHTegDaAhHQKc5wPPLPld1fZQoaAZHQJJjHa6BiCtoB03oA2gIR0CnPOEidJ8OdX2UKGgGR0CSIyIC2c8UaAdN6ANoCEdAp0STRfF72XV9lChoBkdAkepoHX2/SGgHTegDaAhHQKdGTN2TxG51fZQoaAZHQJGoSL4vexhoB03oA2gIR0CnRlMpobn6dX2UKGgGR0CIefFZxJd0aAdN6ANoCEdAp0mMS26TXHV9lChoBkdAkdtB+BpYcWgHTegDaAhHQKdRS8+Royt1fZQoaAZHQJH8m49X9zhoB03oA2gIR0CnUtlar3j/dX2UKGgGR0CRZVEeyRjjaAdN6ANoCEdAp1Lgmois4nV9lChoBkdAkXZOrlvIfmgHTegDaAhHQKdWG0Jng511fZQoaAZHQJOaBNATqSpoB03oA2gIR0CnXPYYJmdzdX2UKGgGR0CUEBLOiWVvaAdN6ANoCEdAp158DyOJcnV9lChoBkdAkmRU7bL2YmgHTegDaAhHQKdeghIvrW11fZQoaAZHQJShNXV9Wp9oB03oA2gIR0CnYa+GGmDUdX2UKGgGR0CVBigwXZXdaAdN6ANoCEdAp2iq4OMER3V9lChoBkdAlSndgKF7D2gHTegDaAhHQKdqOJ0nw5N1fZQoaAZHQJKdlqveP7xoB03oA2gIR0Cnaj6sZHd5dX2UKGgGR0CVXIGp++dtaAdN6ANoCEdAp21tV94NZ3V9lChoBkdAlBsNayKNymgHTegDaAhHQKd0bmWdEst1fZQoaAZHQJOf2qfe1rtoB03oA2gIR0Cndf3IMjNZdX2UKGgGR0CUB2MUAT7EaAdN6ANoCEdAp3YE2BJ7LXV9lChoBkdAlcB/Olfqo2gHTegDaAhHQKd5KOWBz3h1fZQoaAZHQJOdNrdnCfpoB03oA2gIR0CngBjLr5ZbdX2UKGgGR0CVWqjdHlOoaAdN6ANoCEdAp4GVCNS62HV9lChoBkdAloTe0CzTnmgHTegDaAhHQKeBm0+C9RJ1fZQoaAZHQJPW3K0UoKFoB03oA2gIR0CnhLQbEP1+dX2UKGgGR0CUznR3/xUeaAdN6ANoCEdAp4v6pgkTpXV9lChoBkdAk93rOeJ53WgHTegDaAhHQKeNg1uzhP11fZQoaAZHQJI91wzch1VoB03oA2gIR0CnjYmUW2w3dX2UKGgGR0CSRuw9q1w6aAdN6ANoCEdAp5Cs2kzoEHVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
replay.mp4 ADDED
Binary file (992 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 1265.8483666892048, "std_reward": 41.03459867614737, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-23T18:07:08.691403"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7716596c2c812fa3013cda2a67f1a617141aa590c8b02f58d4a7bf6f989c16b4
3
+ size 2136