--- library_name: peft license: llama3.1 base_model: meta-llama/Meta-Llama-3.1-8B tags: - trl - sft - generated_from_trainer model-index: - name: llama-3.1-8B-personality-detection results: [] --- # llama-3.1-8B-personality-detection This model is a fine-tuned version of [meta-llama/Meta-Llama-3.1-8B](https://huggingface.co/meta-llama/Meta-Llama-3.1-8B) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - _load_in_8bit: False - _load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 - bnb_4bit_quant_storage: uint8 - load_in_4bit: True - load_in_8bit: False ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant - lr_scheduler_warmup_ratio: 0.03 - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results ### Framework versions - PEFT 0.4.0 - Transformers 4.44.2 - Pytorch 2.4.1+cu121 - Datasets 2.16.1 - Tokenizers 0.19.1