JerryO3 commited on
Commit
cf04338
1 Parent(s): 082a594

Add new SentenceTransformer model.

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,941 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ license: apache-2.0
5
+ library_name: sentence-transformers
6
+ tags:
7
+ - sentence-transformers
8
+ - sentence-similarity
9
+ - feature-extraction
10
+ - generated_from_trainer
11
+ - dataset_size:1453
12
+ - loss:MatryoshkaLoss
13
+ - loss:MultipleNegativesRankingLoss
14
+ base_model: nomic-ai/nomic-embed-text-v1.5
15
+ datasets: []
16
+ metrics:
17
+ - cosine_accuracy@1
18
+ - cosine_accuracy@3
19
+ - cosine_accuracy@5
20
+ - cosine_accuracy@10
21
+ - cosine_precision@1
22
+ - cosine_precision@3
23
+ - cosine_precision@5
24
+ - cosine_precision@10
25
+ - cosine_recall@1
26
+ - cosine_recall@3
27
+ - cosine_recall@5
28
+ - cosine_recall@10
29
+ - cosine_ndcg@10
30
+ - cosine_mrr@10
31
+ - cosine_map@100
32
+ widget:
33
+ - source_sentence: 'We therefore conducted a hospital based cross sectional study
34
+ involving 101 HCWs from two facilities in Kumasi, Ghana to assess the level of
35
+ preparedness of HCWs to respond to any possible EVD. METHODS: We administered
36
+ a face-to-face questionnaire using an adapted WHO (2015) and CDC (2014) Checklist
37
+ for Ebola Preparedness and assessed overall knowledge gaps, and preparedness of
38
+ the Ghanaian HCWs in selected health facilities of the Ashanti Region of Ghana
39
+ from October to December 2015. RESULTS: A total 92 (91.09%) HCWs indicated they
40
+ were not adequately trained to handle an EVD suspected case. Only 25.74% (n =
41
+ 26) considered their facilities sufficiently equipped to handle and manage EVD
42
+ patients. When asked which disinfectant to use after attending to and caring for
43
+ a suspected patient with EVD, only 8.91% (n = 9) could correctly identify the
44
+ right disinfectant (χ(2) = 28.52, p = 0.001). CONCLUSION: Our study demonstrates
45
+ poor knowledge and ill preparedness and unwillingness of many HCWs to attend to
46
+ EVD. Beyond knowledge acquisition, there is the need for more training from time
47
+ to time to fully prepare HCWs to handle any possible EVD case. Text: During the
48
+ last outbreak of Ebola Virus Disease (EVD) and its consequential massive epidemic
49
+ with very high mortality [1] , many health systems and services in West Africa
50
+ were overwhelmed and disrupted.'
51
+ sentences:
52
+ - How many facilities believed they were adequately equipped to handle Ebla virus
53
+ disease?
54
+ - What developments have been made possible by the study of B-cell repertoire?
55
+ - Where does the NLRP3 inflammasome activate after a SARS-CoV infection?
56
+ - source_sentence: All influenza A pandemics since that time, and indeed almost all
57
+ cases of influenza A worldwide (except- ing human infections from avian Viruses
58
+ such as H5N1 and H7N7), have been caused by descendants of the 1918 Virus, including
59
+ “drifted” H1N1 Viruses and reassorted H2N2 and H3N2 Viruses. The latter are composed
60
+ of key genes from the 1918 Virus, updated by subsequently-incor— porated avian
61
+ influenza genes that code for novel surface *Armed Forces Institute of Pathology,
62
+ Rockville, Maryland, USA; and TNational Institutes of Health, Bethesda, Maryland,
63
+ USA proteins, making the 1918 Virus indeed the “mother” of all pandemics. In 1918,
64
+ the cause of human influenza and its links to avian and swine influenza were unknown.
65
+ Despite clinical and epidemiologic similarities to influenza pandemics of 1889,
66
+ 1847, and even earlier, many questioned whether such an explosively fatal disease
67
+ could be influenza at all. That question did not begin to be resolved until the
68
+ 1930s, when closely related influenza Viruses (now known to be H1N1 Viruses) were
69
+ isolated, first from pigs and shortly thereafter from humans. Seroepidemiologic
70
+ studies soon linked both of these viruses to the 1918 pandemic (8). Subsequent
71
+ research indicates that descendants of the 1918 Virus still persists enzootically
72
+ in pigs. They probably also circulated continuously in humans, undergoing gradual
73
+ antigenic drift and causing annual epidemics, until the 1950s.
74
+ sentences:
75
+ - What causes Q fever?
76
+ - What was the mean length of the sequenced read?
77
+ - When was it determined that the 1918 pandemic was caused by the H1N1 Influenza
78
+ virus?
79
+ - source_sentence: These results showed that CD3 + CD4 + T cells have obviously (P<0.01)
80
+ increased ( Figure 5B ), nevertheless the CD3 + CD8 + T cells remarkably (P<0.05)
81
+ declined ( Figure 5C ). After calculation, the ratio of CD4 + /CD8 + T cells increased
82
+ ( Figure 5D ). This ratio could also further measure the immunity levels of piglets.
83
+ Cytokine IL-1β and IL-10 levels were determined to evaluate cellular immune responses
84
+ induced by B. subtilis-RC as shown in Figure 6A ,B. As we can see from the diagram,
85
+ significantly (P<0.01) higher IL-1β and IL-10 were produced after oral administration
86
+ with B. subtilis-RC than the other two groups. These all revealed that B. subtilis-RC
87
+ could stimulate cytokines release to mediate communication with and between cells
88
+ of the immune system, improving the mucosal immune response to PEDV infection.
89
+ The PEDV neutralizing antibodies were detected by PRNT assay. Oral administration
90
+ with B. subtilis-RC could effectively reduce the plaque-forming ability of PEDV
91
+ (P<0.01) compared with other two groups in Figure 7 .
92
+ sentences:
93
+ - Why are antibody epitope based peptide vaccines are no longer an active research
94
+ area?
95
+ - What is a conclusion of this study?
96
+ - What is an effective indicator of a vaccine's ability to generate an immune response?
97
+ - source_sentence: Many types of bacteriophage and engineered phage variants, including
98
+ filamentous phage, have been proposed for prophylactic use ex vivo in food safety,
99
+ either in the production pipeline (reviewed in Dalmasso et al., 2014) or for detection
100
+ of foodborne pathogens post-production (reviewed in Schmelcher and Loessner, 2014)
101
+ . Filamentous phage displaying a tetracysteine tag on pIII were used to detect
102
+ E. coli cells through staining with biarsenical dye . M13 phage functionalized
103
+ with metallic silver were highly bactericidal against E. coli and Staphylococcus
104
+ epidermidis . Biosensors based on surface plasmon resonance (Nanduri et al., 2007)
105
+ , piezoelectric transducers (Olsen et al., 2006) , linear dichroism (Pacheco-Gomez
106
+ et al., 2012) , and magnetoelastic sensor technology (Lakshmanan et al., 2007;
107
+ Huang et al., 2009) were devised using filamentous phage displaying scFv or conjugated
108
+ to whole IgG against E. coli, Listeria monocytogenes, Salmonella typhimurium,
109
+ and Bacillus anthracis with limits of detection on the order of 10 2 -10 6 bacterial
110
+ cells/mL. Proof of concept has been demonstrated for use of such phage-based biosensors
111
+ to detect bacterial contamination of live produce (Li et al., 2010b) and eggs
112
+ (Chai et al., 2012) . The filamentous phage particle is enclosed by a rod-like
113
+ protein capsid, ∼1000 nm long and 5 nm wide, made up almost entirely of overlapping
114
+ pVIII monomers, each of which lies ∼27 angstroms from its nearest neighbor and
115
+ exposes two amine groups as well as at least three carboxyl groups (Henry et al.,
116
+ 2011) . The regularity of the phage pVIII lattice and its diversity of chemically
117
+ addressable groups make it an ideal scaffold for bioconjugation (Figure 3) . The
118
+ most commonly used approach is functionalization of amine groups with NHS esters
119
+ (van Houten et al., 2006 (van Houten et al., , 2010 Yacoby et al., 2006) , although
120
+ this can result in unwanted acylation of pIII and any displayed biomolecules.
121
+ sentences:
122
+ - What is the contrast with SARS-COV and MERS=COV?
123
+ - What is the structure of a filamentous phage particle?
124
+ - Why do treatment and management vary in efficacy?
125
+ - source_sentence: The monolayers were removed from their plastic surfaces and serially
126
+ passaged whenever they became confluent. Cells were plated out onto 96-well culture
127
+ plates for cytotoxicity and anti-influenza assays, and propagated at 37 °C in
128
+ an atmosphere of 5% CO 2 . The influenza strain A/Leningrad/134/17/1957 H2N2)
129
+ was purchased from National Control Institute of Veterinary Bioproducts and Pharmaceuticals
130
+ (Beijing, China). Virus was routinely grown on MDCK cells. The stock cultures
131
+ were prepared from supernatants of infected cells and stored at −80 °C. The cellular
132
+ toxicity of patchouli alcohol on MDCK cells was assessed by the MTT method. Briefly,
133
+ cells were seeded on a microtiter plate in the absence or presence of various
134
+ concentrations (20 µM -0.0098 µM) of patchouli alcohol (eight replicates) and
135
+ incubated at 37 °C in a humidified atmosphere of 5% CO 2 for 72 h. The supernatants
136
+ were discarded, washed with PBS twice and MTT reagent (5 mg/mL in PBS) was added
137
+ to each well. After incubation at 37 °C for 4 h, the supernatants were removed,
138
+ then 200 μL DMSO was added and incubated at 37 °C for another 30 min.
139
+ sentences:
140
+ - What can be a factor in using common vectors for the delivery of vaccines?
141
+ - ' What can some of the other activities of N have, be linked to?'
142
+ - What method was used to measure the inhibition of viral replication?
143
+ pipeline_tag: sentence-similarity
144
+ model-index:
145
+ - name: nomic-text-embed COVID QA Matryoshka test
146
+ results:
147
+ - task:
148
+ type: information-retrieval
149
+ name: Information Retrieval
150
+ dataset:
151
+ name: dim 768
152
+ type: dim_768
153
+ metrics:
154
+ - type: cosine_accuracy@1
155
+ value: 0.32098765432098764
156
+ name: Cosine Accuracy@1
157
+ - type: cosine_accuracy@3
158
+ value: 0.6049382716049383
159
+ name: Cosine Accuracy@3
160
+ - type: cosine_accuracy@5
161
+ value: 0.7222222222222222
162
+ name: Cosine Accuracy@5
163
+ - type: cosine_accuracy@10
164
+ value: 0.8580246913580247
165
+ name: Cosine Accuracy@10
166
+ - type: cosine_precision@1
167
+ value: 0.32098765432098764
168
+ name: Cosine Precision@1
169
+ - type: cosine_precision@3
170
+ value: 0.20164609053497942
171
+ name: Cosine Precision@3
172
+ - type: cosine_precision@5
173
+ value: 0.14444444444444443
174
+ name: Cosine Precision@5
175
+ - type: cosine_precision@10
176
+ value: 0.08580246913580246
177
+ name: Cosine Precision@10
178
+ - type: cosine_recall@1
179
+ value: 0.32098765432098764
180
+ name: Cosine Recall@1
181
+ - type: cosine_recall@3
182
+ value: 0.6049382716049383
183
+ name: Cosine Recall@3
184
+ - type: cosine_recall@5
185
+ value: 0.7222222222222222
186
+ name: Cosine Recall@5
187
+ - type: cosine_recall@10
188
+ value: 0.8580246913580247
189
+ name: Cosine Recall@10
190
+ - type: cosine_ndcg@10
191
+ value: 0.5726476297998092
192
+ name: Cosine Ndcg@10
193
+ - type: cosine_mrr@10
194
+ value: 0.4831545169508133
195
+ name: Cosine Mrr@10
196
+ - type: cosine_map@100
197
+ value: 0.4876624839192167
198
+ name: Cosine Map@100
199
+ - task:
200
+ type: information-retrieval
201
+ name: Information Retrieval
202
+ dataset:
203
+ name: dim 512
204
+ type: dim_512
205
+ metrics:
206
+ - type: cosine_accuracy@1
207
+ value: 0.3395061728395062
208
+ name: Cosine Accuracy@1
209
+ - type: cosine_accuracy@3
210
+ value: 0.6172839506172839
211
+ name: Cosine Accuracy@3
212
+ - type: cosine_accuracy@5
213
+ value: 0.691358024691358
214
+ name: Cosine Accuracy@5
215
+ - type: cosine_accuracy@10
216
+ value: 0.8395061728395061
217
+ name: Cosine Accuracy@10
218
+ - type: cosine_precision@1
219
+ value: 0.3395061728395062
220
+ name: Cosine Precision@1
221
+ - type: cosine_precision@3
222
+ value: 0.20576131687242796
223
+ name: Cosine Precision@3
224
+ - type: cosine_precision@5
225
+ value: 0.1382716049382716
226
+ name: Cosine Precision@5
227
+ - type: cosine_precision@10
228
+ value: 0.0839506172839506
229
+ name: Cosine Precision@10
230
+ - type: cosine_recall@1
231
+ value: 0.3395061728395062
232
+ name: Cosine Recall@1
233
+ - type: cosine_recall@3
234
+ value: 0.6172839506172839
235
+ name: Cosine Recall@3
236
+ - type: cosine_recall@5
237
+ value: 0.691358024691358
238
+ name: Cosine Recall@5
239
+ - type: cosine_recall@10
240
+ value: 0.8395061728395061
241
+ name: Cosine Recall@10
242
+ - type: cosine_ndcg@10
243
+ value: 0.5769674187028887
244
+ name: Cosine Ndcg@10
245
+ - type: cosine_mrr@10
246
+ value: 0.4942803252988438
247
+ name: Cosine Mrr@10
248
+ - type: cosine_map@100
249
+ value: 0.49996505521200235
250
+ name: Cosine Map@100
251
+ - task:
252
+ type: information-retrieval
253
+ name: Information Retrieval
254
+ dataset:
255
+ name: dim 256
256
+ type: dim_256
257
+ metrics:
258
+ - type: cosine_accuracy@1
259
+ value: 0.3148148148148148
260
+ name: Cosine Accuracy@1
261
+ - type: cosine_accuracy@3
262
+ value: 0.5864197530864198
263
+ name: Cosine Accuracy@3
264
+ - type: cosine_accuracy@5
265
+ value: 0.6604938271604939
266
+ name: Cosine Accuracy@5
267
+ - type: cosine_accuracy@10
268
+ value: 0.7901234567901234
269
+ name: Cosine Accuracy@10
270
+ - type: cosine_precision@1
271
+ value: 0.3148148148148148
272
+ name: Cosine Precision@1
273
+ - type: cosine_precision@3
274
+ value: 0.19547325102880658
275
+ name: Cosine Precision@3
276
+ - type: cosine_precision@5
277
+ value: 0.13209876543209875
278
+ name: Cosine Precision@5
279
+ - type: cosine_precision@10
280
+ value: 0.07901234567901234
281
+ name: Cosine Precision@10
282
+ - type: cosine_recall@1
283
+ value: 0.3148148148148148
284
+ name: Cosine Recall@1
285
+ - type: cosine_recall@3
286
+ value: 0.5864197530864198
287
+ name: Cosine Recall@3
288
+ - type: cosine_recall@5
289
+ value: 0.6604938271604939
290
+ name: Cosine Recall@5
291
+ - type: cosine_recall@10
292
+ value: 0.7901234567901234
293
+ name: Cosine Recall@10
294
+ - type: cosine_ndcg@10
295
+ value: 0.5454859667021819
296
+ name: Cosine Ndcg@10
297
+ - type: cosine_mrr@10
298
+ value: 0.46796492259455236
299
+ name: Cosine Mrr@10
300
+ - type: cosine_map@100
301
+ value: 0.4775435566293839
302
+ name: Cosine Map@100
303
+ - task:
304
+ type: information-retrieval
305
+ name: Information Retrieval
306
+ dataset:
307
+ name: dim 128
308
+ type: dim_128
309
+ metrics:
310
+ - type: cosine_accuracy@1
311
+ value: 0.2716049382716049
312
+ name: Cosine Accuracy@1
313
+ - type: cosine_accuracy@3
314
+ value: 0.5370370370370371
315
+ name: Cosine Accuracy@3
316
+ - type: cosine_accuracy@5
317
+ value: 0.654320987654321
318
+ name: Cosine Accuracy@5
319
+ - type: cosine_accuracy@10
320
+ value: 0.7283950617283951
321
+ name: Cosine Accuracy@10
322
+ - type: cosine_precision@1
323
+ value: 0.2716049382716049
324
+ name: Cosine Precision@1
325
+ - type: cosine_precision@3
326
+ value: 0.17901234567901234
327
+ name: Cosine Precision@3
328
+ - type: cosine_precision@5
329
+ value: 0.1308641975308642
330
+ name: Cosine Precision@5
331
+ - type: cosine_precision@10
332
+ value: 0.0728395061728395
333
+ name: Cosine Precision@10
334
+ - type: cosine_recall@1
335
+ value: 0.2716049382716049
336
+ name: Cosine Recall@1
337
+ - type: cosine_recall@3
338
+ value: 0.5370370370370371
339
+ name: Cosine Recall@3
340
+ - type: cosine_recall@5
341
+ value: 0.654320987654321
342
+ name: Cosine Recall@5
343
+ - type: cosine_recall@10
344
+ value: 0.7283950617283951
345
+ name: Cosine Recall@10
346
+ - type: cosine_ndcg@10
347
+ value: 0.4965852195530764
348
+ name: Cosine Ndcg@10
349
+ - type: cosine_mrr@10
350
+ value: 0.4220825984714875
351
+ name: Cosine Mrr@10
352
+ - type: cosine_map@100
353
+ value: 0.43352458189921866
354
+ name: Cosine Map@100
355
+ - task:
356
+ type: information-retrieval
357
+ name: Information Retrieval
358
+ dataset:
359
+ name: dim 64
360
+ type: dim_64
361
+ metrics:
362
+ - type: cosine_accuracy@1
363
+ value: 0.24074074074074073
364
+ name: Cosine Accuracy@1
365
+ - type: cosine_accuracy@3
366
+ value: 0.47530864197530864
367
+ name: Cosine Accuracy@3
368
+ - type: cosine_accuracy@5
369
+ value: 0.5864197530864198
370
+ name: Cosine Accuracy@5
371
+ - type: cosine_accuracy@10
372
+ value: 0.6728395061728395
373
+ name: Cosine Accuracy@10
374
+ - type: cosine_precision@1
375
+ value: 0.24074074074074073
376
+ name: Cosine Precision@1
377
+ - type: cosine_precision@3
378
+ value: 0.15843621399176952
379
+ name: Cosine Precision@3
380
+ - type: cosine_precision@5
381
+ value: 0.11728395061728394
382
+ name: Cosine Precision@5
383
+ - type: cosine_precision@10
384
+ value: 0.06728395061728394
385
+ name: Cosine Precision@10
386
+ - type: cosine_recall@1
387
+ value: 0.24074074074074073
388
+ name: Cosine Recall@1
389
+ - type: cosine_recall@3
390
+ value: 0.47530864197530864
391
+ name: Cosine Recall@3
392
+ - type: cosine_recall@5
393
+ value: 0.5864197530864198
394
+ name: Cosine Recall@5
395
+ - type: cosine_recall@10
396
+ value: 0.6728395061728395
397
+ name: Cosine Recall@10
398
+ - type: cosine_ndcg@10
399
+ value: 0.4508577703429953
400
+ name: Cosine Ndcg@10
401
+ - type: cosine_mrr@10
402
+ value: 0.3797864001567706
403
+ name: Cosine Mrr@10
404
+ - type: cosine_map@100
405
+ value: 0.39108804574508443
406
+ name: Cosine Map@100
407
+ ---
408
+
409
+ # nomic-text-embed COVID QA Matryoshka test
410
+
411
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [nomic-ai/nomic-embed-text-v1.5](https://huggingface.co/nomic-ai/nomic-embed-text-v1.5). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
412
+
413
+ ## Model Details
414
+
415
+ ### Model Description
416
+ - **Model Type:** Sentence Transformer
417
+ - **Base model:** [nomic-ai/nomic-embed-text-v1.5](https://huggingface.co/nomic-ai/nomic-embed-text-v1.5) <!-- at revision b0753ae76394dd36bcfb912a46018088bca48be0 -->
418
+ - **Maximum Sequence Length:** 8192 tokens
419
+ - **Output Dimensionality:** 768 tokens
420
+ - **Similarity Function:** Cosine Similarity
421
+ <!-- - **Training Dataset:** Unknown -->
422
+ - **Language:** en
423
+ - **License:** apache-2.0
424
+
425
+ ### Model Sources
426
+
427
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
428
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
429
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
430
+
431
+ ### Full Model Architecture
432
+
433
+ ```
434
+ SentenceTransformer(
435
+ (0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: NomicBertModel
436
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
437
+ )
438
+ ```
439
+
440
+ ## Usage
441
+
442
+ ### Direct Usage (Sentence Transformers)
443
+
444
+ First install the Sentence Transformers library:
445
+
446
+ ```bash
447
+ pip install -U sentence-transformers
448
+ ```
449
+
450
+ Then you can load this model and run inference.
451
+ ```python
452
+ from sentence_transformers import SentenceTransformer
453
+
454
+ # Download from the 🤗 Hub
455
+ model = SentenceTransformer("JerryO3/test")
456
+ # Run inference
457
+ sentences = [
458
+ 'The monolayers were removed from their plastic surfaces and serially passaged whenever they became confluent. Cells were plated out onto 96-well culture plates for cytotoxicity and anti-influenza assays, and propagated at 37 °C in an atmosphere of 5% CO 2 . The influenza strain A/Leningrad/134/17/1957 H2N2) was purchased from National Control Institute of Veterinary Bioproducts and Pharmaceuticals (Beijing, China). Virus was routinely grown on MDCK cells. The stock cultures were prepared from supernatants of infected cells and stored at −80 °C. The cellular toxicity of patchouli alcohol on MDCK cells was assessed by the MTT method. Briefly, cells were seeded on a microtiter plate in the absence or presence of various concentrations (20 µM -0.0098 µM) of patchouli alcohol (eight replicates) and incubated at 37 °C in a humidified atmosphere of 5% CO 2 for 72 h. The supernatants were discarded, washed with PBS twice and MTT reagent (5 mg/mL in PBS) was added to each well. After incubation at 37 °C for 4 h, the supernatants were removed, then 200 μL DMSO was added and incubated at 37 °C for another 30 min.',
459
+ 'What method was used to measure the inhibition of viral replication?',
460
+ 'What can be a factor in using common vectors for the delivery of vaccines?',
461
+ ]
462
+ embeddings = model.encode(sentences)
463
+ print(embeddings.shape)
464
+ # [3, 768]
465
+
466
+ # Get the similarity scores for the embeddings
467
+ similarities = model.similarity(embeddings, embeddings)
468
+ print(similarities.shape)
469
+ # [3, 3]
470
+ ```
471
+
472
+ <!--
473
+ ### Direct Usage (Transformers)
474
+
475
+ <details><summary>Click to see the direct usage in Transformers</summary>
476
+
477
+ </details>
478
+ -->
479
+
480
+ <!--
481
+ ### Downstream Usage (Sentence Transformers)
482
+
483
+ You can finetune this model on your own dataset.
484
+
485
+ <details><summary>Click to expand</summary>
486
+
487
+ </details>
488
+ -->
489
+
490
+ <!--
491
+ ### Out-of-Scope Use
492
+
493
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
494
+ -->
495
+
496
+ ## Evaluation
497
+
498
+ ### Metrics
499
+
500
+ #### Information Retrieval
501
+ * Dataset: `dim_768`
502
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
503
+
504
+ | Metric | Value |
505
+ |:--------------------|:-----------|
506
+ | cosine_accuracy@1 | 0.321 |
507
+ | cosine_accuracy@3 | 0.6049 |
508
+ | cosine_accuracy@5 | 0.7222 |
509
+ | cosine_accuracy@10 | 0.858 |
510
+ | cosine_precision@1 | 0.321 |
511
+ | cosine_precision@3 | 0.2016 |
512
+ | cosine_precision@5 | 0.1444 |
513
+ | cosine_precision@10 | 0.0858 |
514
+ | cosine_recall@1 | 0.321 |
515
+ | cosine_recall@3 | 0.6049 |
516
+ | cosine_recall@5 | 0.7222 |
517
+ | cosine_recall@10 | 0.858 |
518
+ | cosine_ndcg@10 | 0.5726 |
519
+ | cosine_mrr@10 | 0.4832 |
520
+ | **cosine_map@100** | **0.4877** |
521
+
522
+ #### Information Retrieval
523
+ * Dataset: `dim_512`
524
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
525
+
526
+ | Metric | Value |
527
+ |:--------------------|:--------|
528
+ | cosine_accuracy@1 | 0.3395 |
529
+ | cosine_accuracy@3 | 0.6173 |
530
+ | cosine_accuracy@5 | 0.6914 |
531
+ | cosine_accuracy@10 | 0.8395 |
532
+ | cosine_precision@1 | 0.3395 |
533
+ | cosine_precision@3 | 0.2058 |
534
+ | cosine_precision@5 | 0.1383 |
535
+ | cosine_precision@10 | 0.084 |
536
+ | cosine_recall@1 | 0.3395 |
537
+ | cosine_recall@3 | 0.6173 |
538
+ | cosine_recall@5 | 0.6914 |
539
+ | cosine_recall@10 | 0.8395 |
540
+ | cosine_ndcg@10 | 0.577 |
541
+ | cosine_mrr@10 | 0.4943 |
542
+ | **cosine_map@100** | **0.5** |
543
+
544
+ #### Information Retrieval
545
+ * Dataset: `dim_256`
546
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
547
+
548
+ | Metric | Value |
549
+ |:--------------------|:-----------|
550
+ | cosine_accuracy@1 | 0.3148 |
551
+ | cosine_accuracy@3 | 0.5864 |
552
+ | cosine_accuracy@5 | 0.6605 |
553
+ | cosine_accuracy@10 | 0.7901 |
554
+ | cosine_precision@1 | 0.3148 |
555
+ | cosine_precision@3 | 0.1955 |
556
+ | cosine_precision@5 | 0.1321 |
557
+ | cosine_precision@10 | 0.079 |
558
+ | cosine_recall@1 | 0.3148 |
559
+ | cosine_recall@3 | 0.5864 |
560
+ | cosine_recall@5 | 0.6605 |
561
+ | cosine_recall@10 | 0.7901 |
562
+ | cosine_ndcg@10 | 0.5455 |
563
+ | cosine_mrr@10 | 0.468 |
564
+ | **cosine_map@100** | **0.4775** |
565
+
566
+ #### Information Retrieval
567
+ * Dataset: `dim_128`
568
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
569
+
570
+ | Metric | Value |
571
+ |:--------------------|:-----------|
572
+ | cosine_accuracy@1 | 0.2716 |
573
+ | cosine_accuracy@3 | 0.537 |
574
+ | cosine_accuracy@5 | 0.6543 |
575
+ | cosine_accuracy@10 | 0.7284 |
576
+ | cosine_precision@1 | 0.2716 |
577
+ | cosine_precision@3 | 0.179 |
578
+ | cosine_precision@5 | 0.1309 |
579
+ | cosine_precision@10 | 0.0728 |
580
+ | cosine_recall@1 | 0.2716 |
581
+ | cosine_recall@3 | 0.537 |
582
+ | cosine_recall@5 | 0.6543 |
583
+ | cosine_recall@10 | 0.7284 |
584
+ | cosine_ndcg@10 | 0.4966 |
585
+ | cosine_mrr@10 | 0.4221 |
586
+ | **cosine_map@100** | **0.4335** |
587
+
588
+ #### Information Retrieval
589
+ * Dataset: `dim_64`
590
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
591
+
592
+ | Metric | Value |
593
+ |:--------------------|:-----------|
594
+ | cosine_accuracy@1 | 0.2407 |
595
+ | cosine_accuracy@3 | 0.4753 |
596
+ | cosine_accuracy@5 | 0.5864 |
597
+ | cosine_accuracy@10 | 0.6728 |
598
+ | cosine_precision@1 | 0.2407 |
599
+ | cosine_precision@3 | 0.1584 |
600
+ | cosine_precision@5 | 0.1173 |
601
+ | cosine_precision@10 | 0.0673 |
602
+ | cosine_recall@1 | 0.2407 |
603
+ | cosine_recall@3 | 0.4753 |
604
+ | cosine_recall@5 | 0.5864 |
605
+ | cosine_recall@10 | 0.6728 |
606
+ | cosine_ndcg@10 | 0.4509 |
607
+ | cosine_mrr@10 | 0.3798 |
608
+ | **cosine_map@100** | **0.3911** |
609
+
610
+ <!--
611
+ ## Bias, Risks and Limitations
612
+
613
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
614
+ -->
615
+
616
+ <!--
617
+ ### Recommendations
618
+
619
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
620
+ -->
621
+
622
+ ## Training Details
623
+
624
+ ### Training Dataset
625
+
626
+ #### Unnamed Dataset
627
+
628
+
629
+ * Size: 1,453 training samples
630
+ * Columns: <code>positive</code> and <code>anchor</code>
631
+ * Approximate statistics based on the first 1000 samples:
632
+ | | positive | anchor |
633
+ |:--------|:--------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
634
+ | type | string | string |
635
+ | details | <ul><li>min: 112 tokens</li><li>mean: 319.17 tokens</li><li>max: 778 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 14.84 tokens</li><li>max: 65 tokens</li></ul> |
636
+ * Samples:
637
+ | positive | anchor |
638
+ |:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
639
+ | <code>We find that the slowing growth in daily reported deaths in Italy is consistent with a significant impact of interventions implemented several weeks earlier. In Italy, we estimate that the effective reproduction number, Rt, dropped to close to 1 around the time of Iockdown (11th March), although with a high level of uncertainty. Overall, we estimate that countries have managed to reduce their reproduction number. Our estimates have wide credible intervals and contain 1 for countries that have implemented a|| interventions considered in our analysis. This means that the reproduction number may be above or below this value. With current interventions remaining in place to at least the end of March, we estimate that interventions across all 11 countries will have averted 59,000 deaths up to 31 March [95% credible interval 21,000-120,000]. Many more deaths will be averted through ensuring that interventions remain in place until transmission drops to low levels. We estimate that, across all 11 countries between 7 and 43 million individuals have been infected with SARS-CoV-Z up to 28th March, representing between 1.88% and 11.43% ofthe population.</code> | <code>Approximately how many deaths have been averted in Western Europe with current non-pharmaceutical interventions remaining in place until the end of March?</code> |
640
+ | <code>[46] Where the biological samples are taken from also play a role in the sensitivity of these tests. For SARS-CoV and MERS-CoV, specimens collected from the lower respiratory tract such as sputum and tracheal aspirates have higher and more prolonged levels of viral RNA because of the tropism of the virus. MERS-CoV viral loads are also higher for severe cases and have longer viral shedding compared to mild cases. Although upper respiratory tract specimens such as nasopharyngeal or oropharyngeal swabs can be used, they have potentially lower viral loads and may have higher risk of false-negatives among the mild MERS and SARS cases [102, 103] , and likely among the 2019-nCoV cases. The existing practices in detecting genetic material of coronaviruses such as SARS-CoV and MERS-CoV include (a) reverse transcription-polymerase chain reaction (RT-PCR), (b) real-time RT-PCR (rRT-PCR), (c) reverse transcription loop-mediated isothermal amplification (RT-LAMP) and (d) real-time RT-LAMP [104] . Nucleic amplification tests (NAAT) are usually preferred as in the case of MERS-CoV diagnosis as it has the highest sensitivity at the earliest time point in the acute phase of infection [102] . Chinese health authorities have recently posted the full genome of 2019-nCoV in the GenBank and in GISAID portal to facilitate in the detection of the virus [11] . Several laboratory assays have been developed to detect the novel coronavirus in Wuhan, as highlighted in WHO's interim guidance on nCoV laboratory testing of suspected cases.</code> | <code>Why are Nucleic amplification tests (NAAT) usually preferred as in the case of MERS-CoV diagnosis?</code> |
641
+ | <code>By the time symptoms appear in HCPS, both strong antiviral responses, and, for the more virulent viral genotypes, viral RNA can be detected in blood plasma or nucleated blood cells respectively [63, 64] . At least three studies have correlated plasma viral RNA with disease severity for HCPS and HFRS, suggesting that the replication of the virus plays an ongoing and real-time role in viral pathogenesis [65] [66] [67] . Several hallmark pathologic changes have been identified that occur in both HFRS and HCPS. A critical feature of both is a transient (~ 1-5 days) capillary leak involving the kidney and retroperitoneal space in HFRS and the lungs in HCPS. The resulting leakage is exudative in character, with chemical composition high in protein and resembling plasma. The continued experience indicating the strong tissue tropism for endothelial cells, specifically, is among the several factors that make β3 integrin an especially attractive candidate as an important in vivo receptor for hantaviruses. It is likely that hantaviruses arrive at their target tissues through uptake by regional lymph nodes, perhaps with or within an escorting lung histiocyte. The virus seeds local endothelium, where the first few infected cells give rise, ultimately, to a primary viremia, a process that appears to take a long time for hantavirus infections [62, 63] .</code> | <code>Which is an especially attractive candidate as an important in vivo receptor for hantaviruses?</code> |
642
+ * Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
643
+ ```json
644
+ {
645
+ "loss": "MultipleNegativesRankingLoss",
646
+ "matryoshka_dims": [
647
+ 768,
648
+ 512,
649
+ 256,
650
+ 128,
651
+ 64
652
+ ],
653
+ "matryoshka_weights": [
654
+ 1,
655
+ 1,
656
+ 1,
657
+ 1,
658
+ 1
659
+ ],
660
+ "n_dims_per_step": -1
661
+ }
662
+ ```
663
+
664
+ ### Training Hyperparameters
665
+ #### Non-Default Hyperparameters
666
+
667
+ - `eval_strategy`: epoch
668
+ - `learning_rate`: 2e-05
669
+ - `num_train_epochs`: 4
670
+ - `lr_scheduler_type`: cosine
671
+ - `warmup_ratio`: 0.1
672
+ - `bf16`: True
673
+ - `tf32`: True
674
+ - `load_best_model_at_end`: True
675
+ - `optim`: adamw_torch_fused
676
+ - `auto_find_batch_size`: True
677
+ - `batch_sampler`: no_duplicates
678
+
679
+ #### All Hyperparameters
680
+ <details><summary>Click to expand</summary>
681
+
682
+ - `overwrite_output_dir`: False
683
+ - `do_predict`: False
684
+ - `eval_strategy`: epoch
685
+ - `prediction_loss_only`: True
686
+ - `per_device_train_batch_size`: 8
687
+ - `per_device_eval_batch_size`: 8
688
+ - `per_gpu_train_batch_size`: None
689
+ - `per_gpu_eval_batch_size`: None
690
+ - `gradient_accumulation_steps`: 1
691
+ - `eval_accumulation_steps`: None
692
+ - `learning_rate`: 2e-05
693
+ - `weight_decay`: 0.0
694
+ - `adam_beta1`: 0.9
695
+ - `adam_beta2`: 0.999
696
+ - `adam_epsilon`: 1e-08
697
+ - `max_grad_norm`: 1.0
698
+ - `num_train_epochs`: 4
699
+ - `max_steps`: -1
700
+ - `lr_scheduler_type`: cosine
701
+ - `lr_scheduler_kwargs`: {}
702
+ - `warmup_ratio`: 0.1
703
+ - `warmup_steps`: 0
704
+ - `log_level`: passive
705
+ - `log_level_replica`: warning
706
+ - `log_on_each_node`: True
707
+ - `logging_nan_inf_filter`: True
708
+ - `save_safetensors`: True
709
+ - `save_on_each_node`: False
710
+ - `save_only_model`: False
711
+ - `restore_callback_states_from_checkpoint`: False
712
+ - `no_cuda`: False
713
+ - `use_cpu`: False
714
+ - `use_mps_device`: False
715
+ - `seed`: 42
716
+ - `data_seed`: None
717
+ - `jit_mode_eval`: False
718
+ - `use_ipex`: False
719
+ - `bf16`: True
720
+ - `fp16`: False
721
+ - `fp16_opt_level`: O1
722
+ - `half_precision_backend`: auto
723
+ - `bf16_full_eval`: False
724
+ - `fp16_full_eval`: False
725
+ - `tf32`: True
726
+ - `local_rank`: 0
727
+ - `ddp_backend`: None
728
+ - `tpu_num_cores`: None
729
+ - `tpu_metrics_debug`: False
730
+ - `debug`: []
731
+ - `dataloader_drop_last`: False
732
+ - `dataloader_num_workers`: 0
733
+ - `dataloader_prefetch_factor`: None
734
+ - `past_index`: -1
735
+ - `disable_tqdm`: False
736
+ - `remove_unused_columns`: True
737
+ - `label_names`: None
738
+ - `load_best_model_at_end`: True
739
+ - `ignore_data_skip`: False
740
+ - `fsdp`: []
741
+ - `fsdp_min_num_params`: 0
742
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
743
+ - `fsdp_transformer_layer_cls_to_wrap`: None
744
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
745
+ - `deepspeed`: None
746
+ - `label_smoothing_factor`: 0.0
747
+ - `optim`: adamw_torch_fused
748
+ - `optim_args`: None
749
+ - `adafactor`: False
750
+ - `group_by_length`: False
751
+ - `length_column_name`: length
752
+ - `ddp_find_unused_parameters`: None
753
+ - `ddp_bucket_cap_mb`: None
754
+ - `ddp_broadcast_buffers`: False
755
+ - `dataloader_pin_memory`: True
756
+ - `dataloader_persistent_workers`: False
757
+ - `skip_memory_metrics`: True
758
+ - `use_legacy_prediction_loop`: False
759
+ - `push_to_hub`: False
760
+ - `resume_from_checkpoint`: None
761
+ - `hub_model_id`: None
762
+ - `hub_strategy`: every_save
763
+ - `hub_private_repo`: False
764
+ - `hub_always_push`: False
765
+ - `gradient_checkpointing`: False
766
+ - `gradient_checkpointing_kwargs`: None
767
+ - `include_inputs_for_metrics`: False
768
+ - `eval_do_concat_batches`: True
769
+ - `fp16_backend`: auto
770
+ - `push_to_hub_model_id`: None
771
+ - `push_to_hub_organization`: None
772
+ - `mp_parameters`:
773
+ - `auto_find_batch_size`: True
774
+ - `full_determinism`: False
775
+ - `torchdynamo`: None
776
+ - `ray_scope`: last
777
+ - `ddp_timeout`: 1800
778
+ - `torch_compile`: False
779
+ - `torch_compile_backend`: None
780
+ - `torch_compile_mode`: None
781
+ - `dispatch_batches`: None
782
+ - `split_batches`: None
783
+ - `include_tokens_per_second`: False
784
+ - `include_num_input_tokens_seen`: False
785
+ - `neftune_noise_alpha`: None
786
+ - `optim_target_modules`: None
787
+ - `batch_eval_metrics`: False
788
+ - `batch_sampler`: no_duplicates
789
+ - `multi_dataset_batch_sampler`: proportional
790
+
791
+ </details>
792
+
793
+ ### Training Logs
794
+ | Epoch | Step | Training Loss | dim_128_cosine_map@100 | dim_256_cosine_map@100 | dim_512_cosine_map@100 | dim_64_cosine_map@100 | dim_768_cosine_map@100 |
795
+ |:-------:|:-------:|:-------------:|:----------------------:|:----------------------:|:----------------------:|:---------------------:|:----------------------:|
796
+ | 0.0549 | 10 | 5.6725 | - | - | - | - | - |
797
+ | 0.1099 | 20 | 4.6781 | - | - | - | - | - |
798
+ | 0.1648 | 30 | 3.9597 | - | - | - | - | - |
799
+ | 0.2198 | 40 | 3.2221 | - | - | - | - | - |
800
+ | 0.2747 | 50 | 2.2144 | - | - | - | - | - |
801
+ | 0.3297 | 60 | 2.8916 | - | - | - | - | - |
802
+ | 0.3846 | 70 | 1.7038 | - | - | - | - | - |
803
+ | 0.4396 | 80 | 2.4738 | - | - | - | - | - |
804
+ | 0.4945 | 90 | 1.8951 | - | - | - | - | - |
805
+ | 0.5495 | 100 | 1.515 | - | - | - | - | - |
806
+ | 0.6044 | 110 | 1.5431 | - | - | - | - | - |
807
+ | 0.6593 | 120 | 2.4492 | - | - | - | - | - |
808
+ | 0.7143 | 130 | 1.656 | - | - | - | - | - |
809
+ | 0.7692 | 140 | 1.7953 | - | - | - | - | - |
810
+ | 0.8242 | 150 | 1.8679 | - | - | - | - | - |
811
+ | 0.8791 | 160 | 2.1551 | - | - | - | - | - |
812
+ | 0.9341 | 170 | 1.5363 | - | - | - | - | - |
813
+ | 0.9890 | 180 | 1.2529 | - | - | - | - | - |
814
+ | 1.0 | 182 | - | 0.3894 | 0.4585 | 0.4805 | 0.3287 | 0.4926 |
815
+ | 1.0440 | 190 | 1.319 | - | - | - | - | - |
816
+ | 1.0989 | 200 | 1.0985 | - | - | - | - | - |
817
+ | 1.1538 | 210 | 1.0403 | - | - | - | - | - |
818
+ | 1.2088 | 220 | 0.4363 | - | - | - | - | - |
819
+ | 1.2637 | 230 | 0.2102 | - | - | - | - | - |
820
+ | 1.3187 | 240 | 0.3584 | - | - | - | - | - |
821
+ | 1.3736 | 250 | 0.2683 | - | - | - | - | - |
822
+ | 1.4286 | 260 | 0.4438 | - | - | - | - | - |
823
+ | 1.4835 | 270 | 0.34 | - | - | - | - | - |
824
+ | 1.5385 | 280 | 0.4296 | - | - | - | - | - |
825
+ | 1.5934 | 290 | 0.2323 | - | - | - | - | - |
826
+ | 1.6484 | 300 | 0.3259 | - | - | - | - | - |
827
+ | 1.7033 | 310 | 0.4339 | - | - | - | - | - |
828
+ | 1.7582 | 320 | 0.1524 | - | - | - | - | - |
829
+ | 1.8132 | 330 | 0.0782 | - | - | - | - | - |
830
+ | 1.8681 | 340 | 0.4306 | - | - | - | - | - |
831
+ | 1.9231 | 350 | 0.312 | - | - | - | - | - |
832
+ | 1.9780 | 360 | 0.2112 | - | - | - | - | - |
833
+ | 2.0 | 364 | - | 0.4139 | 0.4526 | 0.4762 | 0.3761 | 0.4672 |
834
+ | 2.0330 | 370 | 0.2341 | - | - | - | - | - |
835
+ | 2.0879 | 380 | 0.1965 | - | - | - | - | - |
836
+ | 2.1429 | 390 | 0.3019 | - | - | - | - | - |
837
+ | 2.1978 | 400 | 0.1518 | - | - | - | - | - |
838
+ | 2.2527 | 410 | 0.0203 | - | - | - | - | - |
839
+ | 2.3077 | 420 | 0.0687 | - | - | - | - | - |
840
+ | 2.3626 | 430 | 0.0206 | - | - | - | - | - |
841
+ | 2.4176 | 440 | 0.3615 | - | - | - | - | - |
842
+ | 2.4725 | 450 | 0.4674 | - | - | - | - | - |
843
+ | 2.5275 | 460 | 0.0623 | - | - | - | - | - |
844
+ | 2.5824 | 470 | 0.0222 | - | - | - | - | - |
845
+ | 2.6374 | 480 | 0.1049 | - | - | - | - | - |
846
+ | 2.6923 | 490 | 0.4955 | - | - | - | - | - |
847
+ | 2.7473 | 500 | 0.439 | - | - | - | - | - |
848
+ | 2.8022 | 510 | 0.0052 | - | - | - | - | - |
849
+ | 2.8571 | 520 | 0.16 | - | - | - | - | - |
850
+ | 2.9121 | 530 | 0.0583 | - | - | - | - | - |
851
+ | 2.9670 | 540 | 0.0127 | - | - | - | - | - |
852
+ | **3.0** | **546** | **-** | **0.4427** | **0.4765** | **0.508** | **0.397** | **0.5021** |
853
+ | 3.0220 | 550 | 0.0143 | - | - | - | - | - |
854
+ | 3.0769 | 560 | 0.0228 | - | - | - | - | - |
855
+ | 3.1319 | 570 | 0.0704 | - | - | - | - | - |
856
+ | 3.1868 | 580 | 0.0086 | - | - | - | - | - |
857
+ | 3.2418 | 590 | 0.001 | - | - | - | - | - |
858
+ | 3.2967 | 600 | 0.002 | - | - | - | - | - |
859
+ | 3.3516 | 610 | 0.0016 | - | - | - | - | - |
860
+ | 3.4066 | 620 | 0.021 | - | - | - | - | - |
861
+ | 3.4615 | 630 | 0.0013 | - | - | - | - | - |
862
+ | 3.5165 | 640 | 0.0723 | - | - | - | - | - |
863
+ | 3.5714 | 650 | 0.0045 | - | - | - | - | - |
864
+ | 3.6264 | 660 | 0.0048 | - | - | - | - | - |
865
+ | 3.6813 | 670 | 0.1005 | - | - | - | - | - |
866
+ | 3.7363 | 680 | 0.0018 | - | - | - | - | - |
867
+ | 3.7912 | 690 | 0.0101 | - | - | - | - | - |
868
+ | 3.8462 | 700 | 0.0104 | - | - | - | - | - |
869
+ | 3.9011 | 710 | 0.0025 | - | - | - | - | - |
870
+ | 3.9560 | 720 | 0.014 | - | - | - | - | - |
871
+ | 4.0 | 728 | - | 0.4335 | 0.4775 | 0.5000 | 0.3911 | 0.4877 |
872
+
873
+ * The bold row denotes the saved checkpoint.
874
+
875
+ ### Framework Versions
876
+ - Python: 3.11.9
877
+ - Sentence Transformers: 3.0.1
878
+ - Transformers: 4.41.2
879
+ - PyTorch: 2.1.2+cu121
880
+ - Accelerate: 0.31.0
881
+ - Datasets: 2.19.1
882
+ - Tokenizers: 0.19.1
883
+
884
+ ## Citation
885
+
886
+ ### BibTeX
887
+
888
+ #### Sentence Transformers
889
+ ```bibtex
890
+ @inproceedings{reimers-2019-sentence-bert,
891
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
892
+ author = "Reimers, Nils and Gurevych, Iryna",
893
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
894
+ month = "11",
895
+ year = "2019",
896
+ publisher = "Association for Computational Linguistics",
897
+ url = "https://arxiv.org/abs/1908.10084",
898
+ }
899
+ ```
900
+
901
+ #### MatryoshkaLoss
902
+ ```bibtex
903
+ @misc{kusupati2024matryoshka,
904
+ title={Matryoshka Representation Learning},
905
+ author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
906
+ year={2024},
907
+ eprint={2205.13147},
908
+ archivePrefix={arXiv},
909
+ primaryClass={cs.LG}
910
+ }
911
+ ```
912
+
913
+ #### MultipleNegativesRankingLoss
914
+ ```bibtex
915
+ @misc{henderson2017efficient,
916
+ title={Efficient Natural Language Response Suggestion for Smart Reply},
917
+ author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
918
+ year={2017},
919
+ eprint={1705.00652},
920
+ archivePrefix={arXiv},
921
+ primaryClass={cs.CL}
922
+ }
923
+ ```
924
+
925
+ <!--
926
+ ## Glossary
927
+
928
+ *Clearly define terms in order to be accessible across audiences.*
929
+ -->
930
+
931
+ <!--
932
+ ## Model Card Authors
933
+
934
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
935
+ -->
936
+
937
+ <!--
938
+ ## Model Card Contact
939
+
940
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
941
+ -->
config.json ADDED
@@ -0,0 +1,58 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "nomic-ai/nomic-embed-text-v1.5",
3
+ "activation_function": "swiglu",
4
+ "architectures": [
5
+ "NomicBertModel"
6
+ ],
7
+ "attn_pdrop": 0.0,
8
+ "auto_map": {
9
+ "AutoConfig": "nomic-ai/nomic-bert-2048--configuration_hf_nomic_bert.NomicBertConfig",
10
+ "AutoModel": "nomic-ai/nomic-bert-2048--modeling_hf_nomic_bert.NomicBertModel",
11
+ "AutoModelForMaskedLM": "nomic-ai/nomic-bert-2048--modeling_hf_nomic_bert.NomicBertForPreTraining"
12
+ },
13
+ "bos_token_id": null,
14
+ "causal": false,
15
+ "dense_seq_output": true,
16
+ "embd_pdrop": 0.0,
17
+ "eos_token_id": null,
18
+ "fused_bias_fc": true,
19
+ "fused_dropout_add_ln": true,
20
+ "initializer_range": 0.02,
21
+ "layer_norm_epsilon": 1e-12,
22
+ "max_trained_positions": 2048,
23
+ "mlp_fc1_bias": false,
24
+ "mlp_fc2_bias": false,
25
+ "model_type": "nomic_bert",
26
+ "n_embd": 768,
27
+ "n_head": 12,
28
+ "n_inner": 3072,
29
+ "n_layer": 12,
30
+ "n_positions": 8192,
31
+ "pad_vocab_size_multiple": 64,
32
+ "parallel_block": false,
33
+ "parallel_block_tied_norm": false,
34
+ "prenorm": false,
35
+ "qkv_proj_bias": false,
36
+ "reorder_and_upcast_attn": false,
37
+ "resid_pdrop": 0.0,
38
+ "rotary_emb_base": 1000,
39
+ "rotary_emb_fraction": 1.0,
40
+ "rotary_emb_interleaved": false,
41
+ "rotary_emb_scale_base": null,
42
+ "rotary_scaling_factor": null,
43
+ "scale_attn_by_inverse_layer_idx": false,
44
+ "scale_attn_weights": true,
45
+ "summary_activation": null,
46
+ "summary_first_dropout": 0.0,
47
+ "summary_proj_to_labels": true,
48
+ "summary_type": "cls_index",
49
+ "summary_use_proj": true,
50
+ "torch_dtype": "float32",
51
+ "transformers_version": "4.41.2",
52
+ "type_vocab_size": 2,
53
+ "use_cache": true,
54
+ "use_flash_attn": true,
55
+ "use_rms_norm": false,
56
+ "use_xentropy": true,
57
+ "vocab_size": 30528
58
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.0.1",
4
+ "transformers": "4.41.2",
5
+ "pytorch": "2.1.2+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:69b401c0bd1af2787fde09a704dff413492db2ef957e42bf62faf6bd36ae6636
3
+ size 546938168
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 8192,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,55 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_lower_case": true,
47
+ "mask_token": "[MASK]",
48
+ "model_max_length": 8192,
49
+ "pad_token": "[PAD]",
50
+ "sep_token": "[SEP]",
51
+ "strip_accents": null,
52
+ "tokenize_chinese_chars": true,
53
+ "tokenizer_class": "BertTokenizer",
54
+ "unk_token": "[UNK]"
55
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff