--- license: mit base_model: xlnet-large-cased tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: baseline_xlnet-large-cased_epoch1_batch1_lr2e-05_w0.01 results: [] --- # baseline_xlnet-large-cased_epoch1_batch1_lr2e-05_w0.01 This model is a fine-tuned version of [xlnet-large-cased](https://huggingface.co/xlnet-large-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.9656 - Accuracy: 0.6274 - F1: 0.0 - Precision: 0.0 - Recall: 0.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---:|:---------:|:------:| | 1.9638 | 1.0 | 3149 | 1.9656 | 0.6274 | 0.0 | 0.0 | 0.0 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.2 - Tokenizers 0.13.3