--- license: mit base_model: digitalepidemiologylab/covid-twitter-bert-v2 tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: covid-twitter-bert-v2_1_4_2e-05_0.01 results: [] --- # covid-twitter-bert-v2_1_4_2e-05_0.01 This model is a fine-tuned version of [digitalepidemiologylab/covid-twitter-bert-v2](https://huggingface.co/digitalepidemiologylab/covid-twitter-bert-v2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1675 - Accuracy: 0.9659 - F1: 0.9117 - Precision: 0.8761 - Recall: 0.9502 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| | 0.2014 | 1.0 | 1629 | 0.1675 | 0.9659 | 0.9117 | 0.8761 | 0.9502 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.3 - Tokenizers 0.13.3