Model save
Browse files
README.md
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
base_model: google/mobilebert-uncased
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
metrics:
|
7 |
+
- accuracy
|
8 |
+
- f1
|
9 |
+
model-index:
|
10 |
+
- name: scam-alert-mobile-bert
|
11 |
+
results: []
|
12 |
+
---
|
13 |
+
|
14 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
15 |
+
should probably proofread and complete it, then remove this comment. -->
|
16 |
+
|
17 |
+
# scam-alert-mobile-bert
|
18 |
+
|
19 |
+
This model is a fine-tuned version of [google/mobilebert-uncased](https://huggingface.co/google/mobilebert-uncased) on an unknown dataset.
|
20 |
+
It achieves the following results on the evaluation set:
|
21 |
+
- Loss: 0.7097
|
22 |
+
- Accuracy: 0.9880
|
23 |
+
- F1: 0.9880
|
24 |
+
|
25 |
+
## Model description
|
26 |
+
|
27 |
+
More information needed
|
28 |
+
|
29 |
+
## Intended uses & limitations
|
30 |
+
|
31 |
+
More information needed
|
32 |
+
|
33 |
+
## Training and evaluation data
|
34 |
+
|
35 |
+
More information needed
|
36 |
+
|
37 |
+
## Training procedure
|
38 |
+
|
39 |
+
### Training hyperparameters
|
40 |
+
|
41 |
+
The following hyperparameters were used during training:
|
42 |
+
- learning_rate: 2e-05
|
43 |
+
- train_batch_size: 8
|
44 |
+
- eval_batch_size: 2
|
45 |
+
- seed: 42
|
46 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
47 |
+
- lr_scheduler_type: linear
|
48 |
+
- num_epochs: 6
|
49 |
+
|
50 |
+
### Training results
|
51 |
+
|
52 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|
53 |
+
|:-------------:|:------:|:----:|:---------------:|:--------:|:------:|
|
54 |
+
| No log | 0.1577 | 100 | 0.4729 | 0.9223 | 0.9145 |
|
55 |
+
| No log | 0.3155 | 200 | 2.1621 | 0.9801 | 0.9803 |
|
56 |
+
| No log | 0.4732 | 300 | 0.8327 | 0.9900 | 0.9900 |
|
57 |
+
| No log | 0.6309 | 400 | 3.3648 | 0.9900 | 0.9900 |
|
58 |
+
| No log | 0.7886 | 500 | 0.8376 | 0.9861 | 0.9861 |
|
59 |
+
| No log | 0.9464 | 600 | 0.7630 | 0.9861 | 0.9861 |
|
60 |
+
| No log | 1.1041 | 700 | 0.6559 | 0.9861 | 0.9861 |
|
61 |
+
| No log | 1.2618 | 800 | 2.2440 | 0.9880 | 0.9880 |
|
62 |
+
| No log | 1.4196 | 900 | 2.4358 | 0.9900 | 0.9900 |
|
63 |
+
| No log | 1.5773 | 1000 | 1.9655 | 0.9861 | 0.9859 |
|
64 |
+
| No log | 1.7350 | 1100 | 1.8927 | 0.9880 | 0.9880 |
|
65 |
+
| No log | 1.8927 | 1200 | 1.3919 | 0.9880 | 0.9880 |
|
66 |
+
| No log | 2.0505 | 1300 | 0.9143 | 0.9861 | 0.9860 |
|
67 |
+
| No log | 2.2082 | 1400 | 0.1891 | 0.9861 | 0.9859 |
|
68 |
+
| No log | 2.3659 | 1500 | 0.0815 | 0.9861 | 0.9861 |
|
69 |
+
| No log | 2.5237 | 1600 | 0.0853 | 0.9880 | 0.9880 |
|
70 |
+
| No log | 2.6814 | 1700 | 0.2719 | 0.9861 | 0.9860 |
|
71 |
+
| No log | 2.8391 | 1800 | 0.2175 | 0.9900 | 0.9900 |
|
72 |
+
| No log | 2.9968 | 1900 | 0.5407 | 0.9880 | 0.9880 |
|
73 |
+
| No log | 3.1546 | 2000 | 0.8695 | 0.9880 | 0.9880 |
|
74 |
+
| No log | 3.3123 | 2100 | 0.1031 | 0.9880 | 0.9880 |
|
75 |
+
| No log | 3.4700 | 2200 | 1.1922 | 0.9900 | 0.9900 |
|
76 |
+
| No log | 3.6278 | 2300 | 0.4830 | 0.9880 | 0.9880 |
|
77 |
+
| No log | 3.7855 | 2400 | 1.4562 | 0.9880 | 0.9880 |
|
78 |
+
| No log | 3.9432 | 2500 | 1.8929 | 0.9900 | 0.9900 |
|
79 |
+
| 2789.4062 | 4.1009 | 2600 | 0.6560 | 0.9880 | 0.9880 |
|
80 |
+
| 2789.4062 | 4.2587 | 2700 | 0.1473 | 0.9841 | 0.9842 |
|
81 |
+
| 2789.4062 | 4.4164 | 2800 | 0.3488 | 0.9880 | 0.9880 |
|
82 |
+
| 2789.4062 | 4.5741 | 2900 | 0.2347 | 0.9880 | 0.9880 |
|
83 |
+
| 2789.4062 | 4.7319 | 3000 | 0.7488 | 0.9900 | 0.9900 |
|
84 |
+
| 2789.4062 | 4.8896 | 3100 | 0.5055 | 0.9880 | 0.9880 |
|
85 |
+
| 2789.4062 | 5.0473 | 3200 | 0.8339 | 0.9900 | 0.9900 |
|
86 |
+
| 2789.4062 | 5.2050 | 3300 | 0.5382 | 0.9880 | 0.9880 |
|
87 |
+
| 2789.4062 | 5.3628 | 3400 | 0.6095 | 0.9880 | 0.9880 |
|
88 |
+
| 2789.4062 | 5.5205 | 3500 | 0.7142 | 0.9880 | 0.9880 |
|
89 |
+
| 2789.4062 | 5.6782 | 3600 | 0.6855 | 0.9880 | 0.9880 |
|
90 |
+
| 2789.4062 | 5.8360 | 3700 | 0.7152 | 0.9880 | 0.9880 |
|
91 |
+
| 2789.4062 | 5.9937 | 3800 | 0.7097 | 0.9880 | 0.9880 |
|
92 |
+
|
93 |
+
|
94 |
+
### Framework versions
|
95 |
+
|
96 |
+
- Transformers 4.41.1
|
97 |
+
- Pytorch 2.3.0+cu121
|
98 |
+
- Datasets 2.19.2
|
99 |
+
- Tokenizers 0.19.1
|
model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 98470112
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:82db2e5edfbd15914d669f2d704e48e3f95ce498917361c56169b6e84157ea7d
|
3 |
size 98470112
|
runs/Jun04_18-25-57_439968c1e8e4/events.out.tfevents.1717525558.439968c1e8e4.315.0
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e96683beb6ab2704fa3332a60d312865a62739b1d9c0ab976f4c904925b5bfb9
|
3 |
+
size 19773
|