File size: 1,661 Bytes
842dda2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ac26cd4
842dda2
ac26cd4
 
 
 
 
 
842dda2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ac26cd4
842dda2
 
 
 
 
 
ac26cd4
 
842dda2
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- rouge
model-index:
- name: AraBART-finetuned-wiki-ar
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# AraBART-finetuned-wiki-ar

This model is a fine-tuned version of [moussaKam/AraBART](https://huggingface.co/moussaKam/AraBART) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 2.5303
- Rouge1: 0.8349
- Rouge2: 0.1707
- Rougel: 0.8186
- Rougelsum: 0.8309
- Gen Len: 19.3457

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:|
| 2.8893        | 1.0   | 2556 | 2.5764          | 0.7631 | 0.1592 | 0.7567 | 0.7608    | 19.2665 |
| 2.7276        | 2.0   | 5112 | 2.5303          | 0.8349 | 0.1707 | 0.8186 | 0.8309    | 19.3457 |


### Framework versions

- Transformers 4.25.1
- Pytorch 1.13.0+cu116
- Datasets 2.7.1
- Tokenizers 0.13.2