JiemingYou commited on
Commit
cf8ba64
·
1 Parent(s): c5b499a

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - PandaReachDense-v3
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: PandaReachDense-v3
16
+ type: PandaReachDense-v3
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -0.16 +/- 0.13
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **PandaReachDense-v3**
25
+ This is a trained model of a **A2C** agent playing **PandaReachDense-v3**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-PandaReachDense-v3.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9ac24753f4d7f1fbe6d9ac9aa110f93dc4ef4626aad2699611cf273aef58f2d1
3
+ size 106832
a2c-PandaReachDense-v3/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.1.0
a2c-PandaReachDense-v3/data ADDED
@@ -0,0 +1,97 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7dc49f59dbd0>",
8
+ "__abstractmethods__": "frozenset()",
9
+ "_abc_impl": "<_abc._abc_data object at 0x7dc49f5a6c00>"
10
+ },
11
+ "verbose": 1,
12
+ "policy_kwargs": {
13
+ ":type:": "<class 'dict'>",
14
+ ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
15
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
16
+ "optimizer_kwargs": {
17
+ "alpha": 0.99,
18
+ "eps": 1e-05,
19
+ "weight_decay": 0
20
+ }
21
+ },
22
+ "num_timesteps": 1000000,
23
+ "_total_timesteps": 1000000,
24
+ "_num_timesteps_at_start": 0,
25
+ "seed": null,
26
+ "action_noise": null,
27
+ "start_time": 1695838580622423907,
28
+ "learning_rate": 0.0007,
29
+ "tensorboard_log": null,
30
+ "_last_obs": {
31
+ ":type:": "<class 'collections.OrderedDict'>",
32
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA3M6yvxMZYT8gO5G/+eu+voAW5jyEYCTArfWCPzj2lb9eHLI/TSa4vzMuC79rdSc/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAsuScvz+ESD9yA4O+2ariPSCy0D4dX66/+WKWP8jDgr99N9A/iyw0v2VJ+L7rTqU/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADczrK/ExlhPyA7kb8teaC/guOPPl/icb75676+gBbmPIRgJMBdbRS/2GrtvsDaqb+t9YI/OPaVv14csj9BppM/n7E2v9e2tz9NJri/My4Lv2t1Jz+bPlu//IouPyaLuz+UaA5LBEsGhpRoEnSUUpR1Lg==",
33
+ "achieved_goal": "[[-1.3969378 0.87928885 -1.1346169 ]\n [-0.37289408 0.0280869 -2.5683908 ]\n [ 1.0231224 -1.1715765 1.3914907 ]\n [-1.4386688 -0.5436737 0.6541354 ]]",
34
+ "desired_goal": "[[-1.2257292 0.7832679 -0.25588566]\n [ 0.11067743 0.407609 -1.3622776 ]\n [ 1.1748954 -1.0215998 1.6266934 ]\n [-0.7038047 -0.48493496 1.2914709 ]]",
35
+ "observation": "[[-1.3969378 0.87928885 -1.1346169 -1.253698 0.28103262 -0.2362151 ]\n [-0.37289408 0.0280869 -2.5683908 -0.57979375 -0.46370578 -1.3269882 ]\n [ 1.0231224 -1.1715765 1.3914907 1.1535112 -0.7136478 1.4352673 ]\n [-1.4386688 -0.5436737 0.6541354 -0.85642403 0.68180823 1.465184 ]]"
36
+ },
37
+ "_last_episode_starts": {
38
+ ":type:": "<class 'numpy.ndarray'>",
39
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
40
+ },
41
+ "_last_original_obs": {
42
+ ":type:": "<class 'collections.OrderedDict'>",
43
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAgwHOPLZzVTyc4DM+o7oBvVj7rruJ+HQ+O8wAPpgjy70ut4Q+TmRJvJNyur0t15I+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
44
+ "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
45
+ "desired_goal": "[[ 0.02514721 0.01302808 0.1756615 ]\n [-0.03167213 -0.00534002 0.23922934]\n [ 0.12577908 -0.09918898 0.25921005]\n [-0.01229198 -0.09103885 0.2867979 ]]",
46
+ "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
47
+ },
48
+ "_episode_num": 0,
49
+ "use_sde": false,
50
+ "sde_sample_freq": -1,
51
+ "_current_progress_remaining": 0.0,
52
+ "_stats_window_size": 100,
53
+ "ep_info_buffer": {
54
+ ":type:": "<class 'collections.deque'>",
55
+ ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHv9jkPtlZowqMAWyUSwSMAXSUR0ClyGf9YOlPdX2UKGgGR7+7faYeDFqBaAdLAmgIR0ClySyk9ECvdX2UKGgGR7+aq0dBBzFNaAdLAWgIR0ClyO1qN6w/dX2UKGgGR7+8Q2/BWPtEaAdLAmgIR0ClyLRK6FufdX2UKGgGR7+/2IwdsBQvaAdLAmgIR0ClyTZMlC1JdX2UKGgGR7/XSU1Q66reaAdLBGgIR0ClyH6+WWyDdX2UKGgGR7/QRBeHBUJfaAdLA2gIR0ClyMZLh73PdX2UKGgGR7+o5vLowEhaaAdLAWgIR0ClyIPIn0CjdX2UKGgGR7/TpiI+GGmDaAdLA2gIR0ClyUiDM/yHdX2UKGgGR7/GzeoDPnjiaAdLAmgIR0ClyVEsJ6Y3dX2UKGgGR7/EItUXHim3aAdLA2gIR0ClyJH/1g6VdX2UKGgGR7/gbQkX1rZbaAdLBGgIR0ClyNvboKUndX2UKGgGR7+zMFEAo5PuaAdLAmgIR0ClyJ4hdMTOdX2UKGgGR7/a3EyckMTfaAdLBGgIR0ClyWdEsrd4dX2UKGgGR7/Ex8D0UXYUaAdLA2gIR0ClyOrCFbmmdX2UKGgGR7+2Q3gk1MufaAdLAmgIR0ClyKgAAAAAdX2UKGgGR7+5koWpIczZaAdLAmgIR0ClyXRQaaTfdX2UKGgGR7/uoN3GGVRlaAdLDWgIR0ClyTV+y7f6dX2UKGgGR7/Dh/iHZbpvaAdLAmgIR0ClyLT+FUQ1dX2UKGgGR7+kD6nBLwnZaAdLAWgIR0ClyXmxdIGydX2UKGgGR7+nGuLaVUuMaAdLAWgIR0ClyTp1JUYLdX2UKGgGR7/KQSSNfgJkaAdLA2gIR0ClyPzfzjFRdX2UKGgGR7+i33Hq/ub7aAdLAWgIR0ClyLof8uSPdX2UKGgGR7+1IJ7b+Lm7aAdLAmgIR0ClyUPM8ox6dX2UKGgGR7/MIyj59E1EaAdLA2gIR0ClyYe7L+xXdX2UKGgGR7/JIaLn9vS/aAdLA2gIR0ClyQrqt5lfdX2UKGgGR7/Ka0hNdqtYaAdLA2gIR0ClyMhZha1UdX2UKGgGR7+SEpRXOnl5aAdLAWgIR0ClyM/GdZq3dX2UKGgGR7/AvQF9roGIaAdLAmgIR0ClyReANG3GdX2UKGgGR7/PUXHim2sraAdLA2gIR0ClyZmQjlgddX2UKGgGR7/gSK3uuzQeaAdLBWgIR0ClyV9PtUn5dX2UKGgGR7/OT0QK8cuKaAdLA2gIR0ClyN8FQl8gdX2UKGgGR7+7HQyAQQMAaAdLAmgIR0ClyWs495hSdX2UKGgGR7/aReTmnwXqaAdLBGgIR0ClyS3AEdNndX2UKGgGR7/Tpx3mmtQsaAdLBGgIR0Clya9bHIZJdX2UKGgGR7/LbFjurp7kaAdLA2gIR0ClyO/gR9PUdX2UKGgGR7/DddE9dNWVaAdLA2gIR0ClyXkdV/+bdX2UKGgGR7/SC8OCoS+QaAdLA2gIR0ClyTt0FKTTdX2UKGgGR7/RcZLqUu+RaAdLA2gIR0ClyP3xvvSddX2UKGgGR7/ZvIfbKzRhaAdLBGgIR0ClycV50KZ2dX2UKGgGR7+6NT987ZFoaAdLAmgIR0ClyYZJ04ipdX2UKGgGR7+nAfuCwr1/aAdLAWgIR0ClycoTGo73dX2UKGgGR7/K1/DtPYWdaAdLA2gIR0ClyU0IcBEKdX2UKGgGR7/GPhhpg1FZaAdLAmgIR0ClyY9sBQvYdX2UKGgGR7/MBmwqy4WlaAdLA2gIR0ClyQ7/GVAzdX2UKGgGR7/ERSP2f02+aAdLAmgIR0ClyVZIQOFydX2UKGgGR7/PmozeoDPoaAdLA2gIR0ClydeTeO4odX2UKGgGR7/NJfYzzmOmaAdLA2gIR0ClyZ7PY4ACdX2UKGgGR7/QqHoHLRrraAdLA2gIR0ClyR42bXpXdX2UKGgGR7/SlF+d9UjtaAdLA2gIR0ClyWWG7BfsdX2UKGgGR7/EjD8+A3DOaAdLA2gIR0ClyecAaNuMdX2UKGgGR7++2JBPbfxdaAdLAmgIR0ClyafSx7iRdX2UKGgGR7+4tsenyd4FaAdLAmgIR0ClybCTt9hJdX2UKGgGR7/JaWX1J17qaAdLA2gIR0ClyXMjFAE/dX2UKGgGR7/Zah6By0a7aAdLBGgIR0ClyTC9h7VsdX2UKGgGR7/MTvAoG6f8aAdLA2gIR0ClyffgJkXldX2UKGgGR7/D987ZFocraAdLAmgIR0ClyX770nPWdX2UKGgGR7/TqebutwJgaAdLA2gIR0ClycE4FRpDdX2UKGgGR7/UyQxN7BwdaAdLA2gIR0ClyUDLr5ZbdX2UKGgGR7/G+W4Vh1DCaAdLA2gIR0ClyY9YfW+XdX2UKGgGR7+5MIu5BkZraAdLAmgIR0ClyUyq2jO+dX2UKGgGR7/NO+qR2bG4aAdLA2gIR0ClydSsKb8WdX2UKGgGR7/OGcFyJbdKaAdLA2gIR0ClyaA1m8NAdX2UKGgGR7/RoN/e+Eh8aAdLA2gIR0ClyeLEk0JodX2UKGgGR7/Zp7CzkZJkaAdLBGgIR0ClyWItthuwdX2UKGgGR7/Byhi9Zid8aAdLAmgIR0Clyan1vl2edX2UKGgGR7/qKGDcuanaaAdLCmgIR0Clyi2pyZKGdX2UKGgGR7+xd/rjYI0JaAdLAmgIR0Clye53C9AYdX2UKGgGR7/F0yxiXpnpaAdLAmgIR0ClyW3G4qgAdX2UKGgGR7/FjNpudf9haAdLAmgIR0ClybTXarWAdX2UKGgGR7+7IyTINmUXaAdLAmgIR0Clyfc7p3X7dX2UKGgGR7+I5tFa0QbuaAdLAWgIR0Clybmnn+yadX2UKGgGR7+3HvMKTjebaAdLAmgIR0ClyXbT2FnJdX2UKGgGR7/RfWcz67/XaAdLA2gIR0ClyjtKZlWfdX2UKGgGR7/RD4gzP8htaAdLA2gIR0ClygpxNqQBdX2UKGgGR7/MMRYigTRIaAdLA2gIR0Clyczi83+/dX2UKGgGR7/P3PAwfyPNaAdLA2gIR0ClyYoVdonKdX2UKGgGR7/P2GqPwNLEaAdLA2gIR0Clyk6tcObzdX2UKGgGR7/LCJoCdSVGaAdLA2gIR0ClyhobGWD6dX2UKGgGR7/MIAOrhisoaAdLA2gIR0Clydy1uzhQdX2UKGgGR7/YZntfG+9KaAdLBGgIR0ClyaKZML4OdX2UKGgGR7/aRSxZ+x4ZaAdLBGgIR0Clymp3os7NdX2UKGgGR7/V17IDHOryaAdLA2gIR0ClyfHsC1Z1dX2UKGgGR7+3LEDQqqffaAdLAmgIR0ClynN7SiM6dX2UKGgGR7/gFHJ9y926aAdLBGgIR0ClyjRTbWVedX2UKGgGR7/NPqs2eg+RaAdLA2gIR0ClybOtOmBOdX2UKGgGR7/Q9xp+MIeHaAdLA2gIR0Clyf8zZYgadX2UKGgGR7/Gz9CNS619aAdLA2gIR0ClyoMl1KXfdX2UKGgGR7/JtWMju8braAdLA2gIR0ClycMy8BdVdX2UKGgGR7/SiFCb+cYqaAdLBGgIR0Clykh0IToMdX2UKGgGR7/D6tT1kDp1aAdLAmgIR0ClylDfWMCLdX2UKGgGR7/bU4rBj4HpaAdLBGgIR0ClyhNLcsUZdX2UKGgGR7/QrdnCfpUxaAdLA2gIR0ClydCJwbVCdX2UKGgGR7/TnoPkJa7maAdLBGgIR0ClypUOVgQZdX2UKGgGR7/B2wmmce8xaAdLAmgIR0Clyh9AHE/CdX2UKGgGR7/Ag/1QIldDaAdLAmgIR0ClydyAxzq9dX2UKGgGR7/In/DLr5ZbaAdLA2gIR0ClymGe+VTrdX2UKGgGR7/Jm03Ov+wUaAdLA2gIR0ClyqWC2+fzdX2UKGgGR7+1CY1He7+UaAdLAmgIR0ClyijdP+GXdX2UKGgGR7+zS/j81n/UaAdLAmgIR0ClyeY95hScdWUu"
56
+ },
57
+ "ep_success_buffer": {
58
+ ":type:": "<class 'collections.deque'>",
59
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
60
+ },
61
+ "_n_updates": 50000,
62
+ "n_steps": 5,
63
+ "gamma": 0.99,
64
+ "gae_lambda": 1.0,
65
+ "ent_coef": 0.0,
66
+ "vf_coef": 0.5,
67
+ "max_grad_norm": 0.5,
68
+ "normalize_advantage": false,
69
+ "observation_space": {
70
+ ":type:": "<class 'gymnasium.spaces.dict.Dict'>",
71
+ ":serialized:": "gAWVsAMAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCdoHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCxLBoWUaC5oHCiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCR0lFKUaDNoHCiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCR0lFKUaDiMBS0xMC4wlGg6jAQxMC4wlGg8TnVidWgsTmgQTmg8TnViLg==",
72
+ "spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (6,), float32))])",
73
+ "_shape": null,
74
+ "dtype": null,
75
+ "_np_random": null
76
+ },
77
+ "action_space": {
78
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
79
+ ":serialized:": "gAWVnQEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolgMAAAAAAAAAAQEBlGgVSwOFlGgZdJRSlIwGX3NoYXBllEsDhZSMA2xvd5RoESiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUaBl0lFKUjARoaWdolGgRKJYMAAAAAAAAAAAAgD8AAIA/AACAP5RoC0sDhZRoGXSUUpSMCGxvd19yZXBylIwELTEuMJSMCWhpZ2hfcmVwcpSMAzEuMJSMCl9ucF9yYW5kb22UTnViLg==",
80
+ "dtype": "float32",
81
+ "bounded_below": "[ True True True]",
82
+ "bounded_above": "[ True True True]",
83
+ "_shape": [
84
+ 3
85
+ ],
86
+ "low": "[-1. -1. -1.]",
87
+ "high": "[1. 1. 1.]",
88
+ "low_repr": "-1.0",
89
+ "high_repr": "1.0",
90
+ "_np_random": null
91
+ },
92
+ "n_envs": 4,
93
+ "lr_schedule": {
94
+ ":type:": "<class 'function'>",
95
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
96
+ }
97
+ }
a2c-PandaReachDense-v3/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bac09fcbc7dcd40c1c99ae963793111891c30ffa59f401b49fb427d9f464a999
3
+ size 44734
a2c-PandaReachDense-v3/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:77b2d32d1800528055061e75dba997f40db97fed2bdf40bf4f7c3d7657b6cb1a
3
+ size 46014
a2c-PandaReachDense-v3/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-PandaReachDense-v3/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023
2
+ - Python: 3.10.12
3
+ - Stable-Baselines3: 2.1.0
4
+ - PyTorch: 2.0.1+cu118
5
+ - GPU Enabled: True
6
+ - Numpy: 1.23.5
7
+ - Cloudpickle: 2.2.1
8
+ - Gymnasium: 0.29.1
9
+ - OpenAI Gym: 0.25.2
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7dc49f59dbd0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7dc49f5a6c00>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1695838580622423907, "learning_rate": 0.0007, "tensorboard_log": null, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA3M6yvxMZYT8gO5G/+eu+voAW5jyEYCTArfWCPzj2lb9eHLI/TSa4vzMuC79rdSc/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAsuScvz+ESD9yA4O+2ariPSCy0D4dX66/+WKWP8jDgr99N9A/iyw0v2VJ+L7rTqU/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADczrK/ExlhPyA7kb8teaC/guOPPl/icb75676+gBbmPIRgJMBdbRS/2GrtvsDaqb+t9YI/OPaVv14csj9BppM/n7E2v9e2tz9NJri/My4Lv2t1Jz+bPlu//IouPyaLuz+UaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[-1.3969378 0.87928885 -1.1346169 ]\n [-0.37289408 0.0280869 -2.5683908 ]\n [ 1.0231224 -1.1715765 1.3914907 ]\n [-1.4386688 -0.5436737 0.6541354 ]]", "desired_goal": "[[-1.2257292 0.7832679 -0.25588566]\n [ 0.11067743 0.407609 -1.3622776 ]\n [ 1.1748954 -1.0215998 1.6266934 ]\n [-0.7038047 -0.48493496 1.2914709 ]]", "observation": "[[-1.3969378 0.87928885 -1.1346169 -1.253698 0.28103262 -0.2362151 ]\n [-0.37289408 0.0280869 -2.5683908 -0.57979375 -0.46370578 -1.3269882 ]\n [ 1.0231224 -1.1715765 1.3914907 1.1535112 -0.7136478 1.4352673 ]\n [-1.4386688 -0.5436737 0.6541354 -0.85642403 0.68180823 1.465184 ]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAgwHOPLZzVTyc4DM+o7oBvVj7rruJ+HQ+O8wAPpgjy70ut4Q+TmRJvJNyur0t15I+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.02514721 0.01302808 0.1756615 ]\n [-0.03167213 -0.00534002 0.23922934]\n [ 0.12577908 -0.09918898 0.25921005]\n [-0.01229198 -0.09103885 0.2867979 ]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHv9jkPtlZowqMAWyUSwSMAXSUR0ClyGf9YOlPdX2UKGgGR7+7faYeDFqBaAdLAmgIR0ClySyk9ECvdX2UKGgGR7+aq0dBBzFNaAdLAWgIR0ClyO1qN6w/dX2UKGgGR7+8Q2/BWPtEaAdLAmgIR0ClyLRK6FufdX2UKGgGR7+/2IwdsBQvaAdLAmgIR0ClyTZMlC1JdX2UKGgGR7/XSU1Q66reaAdLBGgIR0ClyH6+WWyDdX2UKGgGR7/QRBeHBUJfaAdLA2gIR0ClyMZLh73PdX2UKGgGR7+o5vLowEhaaAdLAWgIR0ClyIPIn0CjdX2UKGgGR7/TpiI+GGmDaAdLA2gIR0ClyUiDM/yHdX2UKGgGR7/GzeoDPnjiaAdLAmgIR0ClyVEsJ6Y3dX2UKGgGR7/EItUXHim3aAdLA2gIR0ClyJH/1g6VdX2UKGgGR7/gbQkX1rZbaAdLBGgIR0ClyNvboKUndX2UKGgGR7+zMFEAo5PuaAdLAmgIR0ClyJ4hdMTOdX2UKGgGR7/a3EyckMTfaAdLBGgIR0ClyWdEsrd4dX2UKGgGR7/Ex8D0UXYUaAdLA2gIR0ClyOrCFbmmdX2UKGgGR7+2Q3gk1MufaAdLAmgIR0ClyKgAAAAAdX2UKGgGR7+5koWpIczZaAdLAmgIR0ClyXRQaaTfdX2UKGgGR7/uoN3GGVRlaAdLDWgIR0ClyTV+y7f6dX2UKGgGR7/Dh/iHZbpvaAdLAmgIR0ClyLT+FUQ1dX2UKGgGR7+kD6nBLwnZaAdLAWgIR0ClyXmxdIGydX2UKGgGR7+nGuLaVUuMaAdLAWgIR0ClyTp1JUYLdX2UKGgGR7/KQSSNfgJkaAdLA2gIR0ClyPzfzjFRdX2UKGgGR7+i33Hq/ub7aAdLAWgIR0ClyLof8uSPdX2UKGgGR7+1IJ7b+Lm7aAdLAmgIR0ClyUPM8ox6dX2UKGgGR7/MIyj59E1EaAdLA2gIR0ClyYe7L+xXdX2UKGgGR7/JIaLn9vS/aAdLA2gIR0ClyQrqt5lfdX2UKGgGR7/Ka0hNdqtYaAdLA2gIR0ClyMhZha1UdX2UKGgGR7+SEpRXOnl5aAdLAWgIR0ClyM/GdZq3dX2UKGgGR7/AvQF9roGIaAdLAmgIR0ClyReANG3GdX2UKGgGR7/PUXHim2sraAdLA2gIR0ClyZmQjlgddX2UKGgGR7/gSK3uuzQeaAdLBWgIR0ClyV9PtUn5dX2UKGgGR7/OT0QK8cuKaAdLA2gIR0ClyN8FQl8gdX2UKGgGR7+7HQyAQQMAaAdLAmgIR0ClyWs495hSdX2UKGgGR7/aReTmnwXqaAdLBGgIR0ClyS3AEdNndX2UKGgGR7/Tpx3mmtQsaAdLBGgIR0Clya9bHIZJdX2UKGgGR7/LbFjurp7kaAdLA2gIR0ClyO/gR9PUdX2UKGgGR7/DddE9dNWVaAdLA2gIR0ClyXkdV/+bdX2UKGgGR7/SC8OCoS+QaAdLA2gIR0ClyTt0FKTTdX2UKGgGR7/RcZLqUu+RaAdLA2gIR0ClyP3xvvSddX2UKGgGR7/ZvIfbKzRhaAdLBGgIR0ClycV50KZ2dX2UKGgGR7+6NT987ZFoaAdLAmgIR0ClyYZJ04ipdX2UKGgGR7+nAfuCwr1/aAdLAWgIR0ClycoTGo73dX2UKGgGR7/K1/DtPYWdaAdLA2gIR0ClyU0IcBEKdX2UKGgGR7/GPhhpg1FZaAdLAmgIR0ClyY9sBQvYdX2UKGgGR7/MBmwqy4WlaAdLA2gIR0ClyQ7/GVAzdX2UKGgGR7/ERSP2f02+aAdLAmgIR0ClyVZIQOFydX2UKGgGR7/PmozeoDPoaAdLA2gIR0ClydeTeO4odX2UKGgGR7/NJfYzzmOmaAdLA2gIR0ClyZ7PY4ACdX2UKGgGR7/QqHoHLRrraAdLA2gIR0ClyR42bXpXdX2UKGgGR7/SlF+d9UjtaAdLA2gIR0ClyWWG7BfsdX2UKGgGR7/EjD8+A3DOaAdLA2gIR0ClyecAaNuMdX2UKGgGR7++2JBPbfxdaAdLAmgIR0ClyafSx7iRdX2UKGgGR7+4tsenyd4FaAdLAmgIR0ClybCTt9hJdX2UKGgGR7/JaWX1J17qaAdLA2gIR0ClyXMjFAE/dX2UKGgGR7/Zah6By0a7aAdLBGgIR0ClyTC9h7VsdX2UKGgGR7/MTvAoG6f8aAdLA2gIR0ClyffgJkXldX2UKGgGR7/D987ZFocraAdLAmgIR0ClyX770nPWdX2UKGgGR7/TqebutwJgaAdLA2gIR0ClycE4FRpDdX2UKGgGR7/UyQxN7BwdaAdLA2gIR0ClyUDLr5ZbdX2UKGgGR7/G+W4Vh1DCaAdLA2gIR0ClyY9YfW+XdX2UKGgGR7+5MIu5BkZraAdLAmgIR0ClyUyq2jO+dX2UKGgGR7/NO+qR2bG4aAdLA2gIR0ClydSsKb8WdX2UKGgGR7/OGcFyJbdKaAdLA2gIR0ClyaA1m8NAdX2UKGgGR7/RoN/e+Eh8aAdLA2gIR0ClyeLEk0JodX2UKGgGR7/Zp7CzkZJkaAdLBGgIR0ClyWItthuwdX2UKGgGR7/Byhi9Zid8aAdLAmgIR0Clyan1vl2edX2UKGgGR7/qKGDcuanaaAdLCmgIR0Clyi2pyZKGdX2UKGgGR7+xd/rjYI0JaAdLAmgIR0Clye53C9AYdX2UKGgGR7/F0yxiXpnpaAdLAmgIR0ClyW3G4qgAdX2UKGgGR7/FjNpudf9haAdLAmgIR0ClybTXarWAdX2UKGgGR7+7IyTINmUXaAdLAmgIR0Clyfc7p3X7dX2UKGgGR7+I5tFa0QbuaAdLAWgIR0Clybmnn+yadX2UKGgGR7+3HvMKTjebaAdLAmgIR0ClyXbT2FnJdX2UKGgGR7/RfWcz67/XaAdLA2gIR0ClyjtKZlWfdX2UKGgGR7/RD4gzP8htaAdLA2gIR0ClygpxNqQBdX2UKGgGR7/MMRYigTRIaAdLA2gIR0Clyczi83+/dX2UKGgGR7/P3PAwfyPNaAdLA2gIR0ClyYoVdonKdX2UKGgGR7/P2GqPwNLEaAdLA2gIR0Clyk6tcObzdX2UKGgGR7/LCJoCdSVGaAdLA2gIR0ClyhobGWD6dX2UKGgGR7/MIAOrhisoaAdLA2gIR0Clydy1uzhQdX2UKGgGR7/YZntfG+9KaAdLBGgIR0ClyaKZML4OdX2UKGgGR7/aRSxZ+x4ZaAdLBGgIR0Clymp3os7NdX2UKGgGR7/V17IDHOryaAdLA2gIR0ClyfHsC1Z1dX2UKGgGR7+3LEDQqqffaAdLAmgIR0ClynN7SiM6dX2UKGgGR7/gFHJ9y926aAdLBGgIR0ClyjRTbWVedX2UKGgGR7/NPqs2eg+RaAdLA2gIR0ClybOtOmBOdX2UKGgGR7/Q9xp+MIeHaAdLA2gIR0Clyf8zZYgadX2UKGgGR7/Gz9CNS619aAdLA2gIR0ClyoMl1KXfdX2UKGgGR7/JtWMju8braAdLA2gIR0ClycMy8BdVdX2UKGgGR7/SiFCb+cYqaAdLBGgIR0Clykh0IToMdX2UKGgGR7/D6tT1kDp1aAdLAmgIR0ClylDfWMCLdX2UKGgGR7/bU4rBj4HpaAdLBGgIR0ClyhNLcsUZdX2UKGgGR7/QrdnCfpUxaAdLA2gIR0ClydCJwbVCdX2UKGgGR7/TnoPkJa7maAdLBGgIR0ClypUOVgQZdX2UKGgGR7/B2wmmce8xaAdLAmgIR0Clyh9AHE/CdX2UKGgGR7/Ag/1QIldDaAdLAmgIR0ClydyAxzq9dX2UKGgGR7/In/DLr5ZbaAdLA2gIR0ClymGe+VTrdX2UKGgGR7/Jm03Ov+wUaAdLA2gIR0ClyqWC2+fzdX2UKGgGR7+1CY1He7+UaAdLAmgIR0ClyijdP+GXdX2UKGgGR7+zS/j81n/UaAdLAmgIR0ClyeY95hScdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gymnasium.spaces.dict.Dict'>", ":serialized:": "gAWVsAMAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCdoHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCxLBoWUaC5oHCiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCR0lFKUaDNoHCiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCR0lFKUaDiMBS0xMC4wlGg6jAQxMC4wlGg8TnVidWgsTmgQTmg8TnViLg==", "spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVnQEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolgMAAAAAAAAAAQEBlGgVSwOFlGgZdJRSlIwGX3NoYXBllEsDhZSMA2xvd5RoESiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUaBl0lFKUjARoaWdolGgRKJYMAAAAAAAAAAAAgD8AAIA/AACAP5RoC0sDhZRoGXSUUpSMCGxvd19yZXBylIwELTEuMJSMCWhpZ2hfcmVwcpSMAzEuMJSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "low_repr": "-1.0", "high_repr": "1.0", "_np_random": null}, "n_envs": 4, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.1.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.29.1", "OpenAI Gym": "0.25.2"}}
replay.mp4 ADDED
Binary file (671 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -0.16228939909487963, "std_reward": 0.12504716310632008, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-09-27T19:03:27.489678"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:372d8e8170eb82b7d786f317cac00298e7870f6cf4027be6af1ca7c8ba275854
3
+ size 2623